
sensors

Article

SynPo-Net—Accurate and Fast CNN-Based 6DoF Object Pose
Estimation Using Synthetic Training

Yongzhi Su 1,* , Jason Rambach 2,*, Alain Pagani 2 and Didier Stricker 1,2

����������
�������

Citation: Su, Y.; Rambach, J.;

Pagani, A.; Stricker, D. SynPo-Net—

Accurate and Fast CNN-Based 6DoF

Object Pose Estimation Using

Synthetic Training. Sensors 2021, 21,

300. https://doi.org/10.3390/

s21010300

Received: 11 August 2020

Accepted: 31 December 2020

Published: 5 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 TU Kaiserslautern, 67663 Kaiserslautern, Germany; Didier.Stricker@dfki.de
2 German Research Center for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany;

alain.pagani@dfki.de
* Correspondence: yongzhi.su@dfki.de (Y.S.); Jason.Rambach@dfki.de (J.R.)

Abstract: Estimation and tracking of 6DoF poses of objects in images is a challenging problem of
great importance for robotic interaction and augmented reality. Recent approaches applying deep
neural networks for pose estimation have shown encouraging results. However, most of them rely on
training with real images of objects with severe limitations concerning ground truth pose acquisition,
full coverage of possible poses, and training dataset scaling and generalization capability. This
paper presents a novel approach using a Convolutional Neural Network (CNN) trained exclusively
on single-channel Synthetic images of objects to regress 6DoF object Poses directly (SynPo-Net).
The proposed SynPo-Net is a network architecture specifically designed for pose regression and a
proposed domain adaptation scheme transforming real and synthetic images into an intermediate
domain that is better fit for establishing correspondences. The extensive evaluation shows that our
approach significantly outperforms the state-of-the-art using synthetic training in terms of both
accuracy and speed. Our system can be used to estimate the 6DoF pose from a single frame, or be
integrated into a tracking system to provide the initial pose.

Keywords: object pose estimation; convolutional neural networks; training with synthetic images;
deep learning; domain adaptation; 6DoF object pose; 6DoF object tracking

1. Introduction

Robotic interaction plays an essential role in automatic production, showing a signifi-
cant increase in demand in recent years [1]. At the same time, Augmented Reality (AR) has
shown great potential in tasks such as maintenance and training [2,3], proving its ability
to improve the efficiency of cognitive tasks. 6 Degree-of-Freedom (6DoF) pose estimation
and tracking is a crucial technology for AR and robotic grasping tasks and has therefore
recently received increasing attention by the computer vision and robotics communities.

Approaches relying on depth images exclusively or in conjunction with RGB images
have achieved admirable results over the last years [4,5]. Depth information enables a more
reliable pose estimation for low-textured objects, especially under challenging lighting
conditions. However, depth information, which can be obtained from stereo cameras or
other sensors such as Time-of-Flight (ToF) cameras, is still a privilege of a small group of
devices with specific cost and performance limitations.

In contrast, monocular camera setups are low-cost and more compact. They are
already available on most current mobile devices. Therefore, pose estimation algorithms
relying only on RGB image data are of great importance while posing significant challenges
as well. Classical approaches with RGB images [2,6] extract hand-crafted features from
images and use them in a predefined matching procedure. However, the gradient required
for feature extraction is sensitive to motion blur. Moreover, typical features used in image
processing, such as ORB features [7], have limitations in scaling, rotation and illumination
variations of the targets. They also require target objects with strong edge features.

Sensors 2021, 21, 300. https://doi.org/10.3390/s21010300 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0843-5917
https://doi.org/10.3390/s21010300
https://doi.org/10.3390/s21010300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010300
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/300?type=check_update&version=1


Sensors 2021, 21, 300 2 of 16

Deep learning based approaches and especially Convolutional Neural Networks
(CNNs) have shown excellent results on many computer vision tasks, such as object
detection and classification [8–10], image segmentation [11] or optical flow [12]. The works
of Kendall et al. [13,14] were the first attempts to use CNNs for regression of 6DoF poses for
place recognition and direct relocalization. After that, several learning based approaches
followed, achieving good results on the object pose estimation problem [15–18]. The use of
3D pose refinement methods such as Iterative Closest Point (ICP) [19] or 2D methods [20,21]
to improve the initial estimate appears to be of crucial importance for the performance of
these pose estimation methods.

The training dataset is a critical factor for the performance of deep learning based
methods since a large amount of representative data is required. For tasks such as image
classification or object detection, ground truth can be easily manually labeled. Obtaining
ground truth data of object 6DoF poses is a more challenging task. It requires dedicated
setups, such as a robotic arm or a tracker with additional markers [4,22]. Such approaches
are time-consuming and can only cover a limited variation of the object poses, scene
illumination and background. Apart from that, the use of real data can negatively impact
the ability of trained networks to generalize well in new environments.

Due to these reasons, the use of synthetic images rendered using 3D models of objects
is very promising. Training with synthetic images simplifies creating datasets with a large
number of images while obtaining ground truth of the 6DoF object pose is given directly by
the rendering system. However, new challenges arise from the use of synthetic data since
trained models need to overcome the representation gap between real and synthetic data.
Thus, a further step of domain adaptation is necessary. Therefore, the domain adaptation
problem in deep learning is a highly active field of research.

In our previous work [18], we introduced a novel approach to overcome the represen-
tation gap between synthetic and real images. We suggested using the pencil filter as an
image processing step. Both synthetic and real images are transferred to the pencil filter
domain before the image processing. In the work presented here we improve several parts
of our pipeline, from network architecture to rotation representation and synthetic training
data preparation to achieve a significant increase in accuracy that surpasses the current
state-of-the-art as shown in an extensive experimental evaluation on different datasets.
In detail, we propose the following novel contributions extending our previous work:

• A CNN network architecture specifically designed for increasing accuracy in pose
estimation regression through the replacement of pooling layers with convolutional
layers.

• The use of lie algebra rather than quaternions for angle representation and regression.
• An ablation study that quantitatively shows the positive effect of all main points of

our proposed approach.
• An overall approach that outperforms the state-of-the-art in 6DoF object pose estima-

tion under similar conditions (i.e., no depth images in training, training exclusively
on synthetic images) while being computationally very efficient due to the revised
network architecture.

Some examples of the estimated object pose can be seen in Figure 1. SynPo-Net can
efficiently initialize a frame-to-frame tracking system like VisionLib [23] by providing an
initial pose or relocalizing the system when tracking is lost.

The rest of this paper is organized as follows—in Section 2, we summarize existing
work in object pose estimation and domain adaptation. In Section 3, we formulate the
addressed problem of our work in detail. We introduce our approach in Section 4, discussing
network architecture and training, dataset generation and domain adaptation. Subsequently,
we present an extensive experimental evaluation of our approach and a comparison to the
state-of-the-art in Section 5. Finally, we give concluding remarks in Section 6.



Sensors 2021, 21, 300 3 of 16

Figure 1. We visualize examples of the estimated pose using only SynPo-Net (without pose refine-
ment). The groundtruth 3D bounding box and the predicted 3D bounding box are represented in red
and blue, respectively.

2. Related Work

In this section, previous work related to our approach is classified and summarized.
We first give a short overview of object pose estimation methods using depth and color
information (RGB-D). Subsequently, we discuss state-of-the-art methods relying only on
RGB images, which is directly comparable to our work. Additionally, we look at existing
synthetic to real domain adaptation techniques not limited to pose estimation problems
but also problems of learning from images in general.

2.1. RGB-D Object Pose Estimation

In classical approaches, 2D and 3D features are extracted from the RGB-D source,
and hypotheses are made and verified to match the object 3D model in the scene. In template-
based approaches, for example, in the work of Hinterstoisser et al. [4], templates are
generated in different viewpoints of the object model. The template consists of color
gradient features in the object contour and the depth gradient features on the object sur-
face. The combination of both intensity and depth information helps to provide a reliable
matching result. ICP [19] and its variations are often applied to refine the estimated pose.
The accuracy and speed of these template-based methods are heavily dependant on the
number of used templates. In Reference [24], sub-linear matching complexity was achieved.
However, this usually trades speed for accuracy. Tejani et al. [25] adapted Reference [4]
into a scale-invariant framework to reduce the number of templates. Point pair features
based approaches [5,26] match local features instead of the whole template of the object.
In this way, local details which may be discriminating will not be ignored. However, such
methods appear to be computationally more demanding.

With the development of deep learning, the features for template matching pipeline
can be learned with CNNs. In Reference [27], a CNN was used to extract the descriptors of
the object from various viewpoints. The approach of Reference [28] achieved significant
improvement by using learned local RGB-D features rather than the gradient. Further-
more, Reference [29] proposed a CNN and a multi-view fusion framework to leverage
the information from multiple images, which has advantages, especially in video datasets.
Additionally, the use of CNNs enables per-pixel matching or per-pixel prediction. In Ref-
erence [30], the proposed framework fuses both pixel-wise features from the image and
point-wise features from the corresponding depth image. Predictions are made with each of
those fused dense features, and the highest confidence pose is chosen as the final prediction.
The work of Reference [31] can be seen as an extension of Reference [32] in the RGB-D case.
It addressed the pose estimation problem by keypoint voting in the depth map. The pose
can be calculated by fitting the detected 2D keypoints to their corresponding 3D keypoints
in the object model.

2.2. RGB Object Pose Estimation

Most object pose estimation approaches using only RGB images are realized through
deep neural networks. The approaches can be broadly classified into three categories.

The first category is the approach of extending object detection algorithms. Based on
the detected 2D bounding box, various methods can be used to estimate the object rota-
tion. In SSD-6D [15], the rotation is treated as a discrete viewpoint classification problem.
Other methods directly regress rotation in the form of quaternions [33] or a lie algebra [34]



Sensors 2021, 21, 300 4 of 16

representation. To deal with the occlusion problem, Sundermeyer et al. [17] proposed an
autoencoder-decoder structure to determine the rotation relying on the object representa-
tion in the neural network. However, as Su et al. in Reference [35] point out, the appearance
of the object depends not only on the rotation but also on the translation. Estimating the ob-
ject rotation without considering the bounding box position is not accurate. Reference [36]
later solved this issue by introducing a perspective correction.

Another group of approaches regress the object pose from the entire RGB image
directly. A first attempt to use a CNN for regression of 6DoF poses was PoseNet [13].
The GoogLeNet [37] architecture was used for camera relocalization from images showing
moderate accuracy but the method was not evaluated for object pose estimation. Following
the idea of using a holistic CNN solution for pose estimation, in Reference [18], a similar
network was applied for the regression of object poses. The pencil filter was used as a
domain adaptation technique to enable training exclusively with synthetic images.

Finally, the third category of approaches determines 3D/2D point correspondences
and solves a Perspective n Point (PnP) problem. In contrast to appearance-feature based
keypoints, CNNs can detect keypoints in a more complex feature space. For instance, in the
work of References [16,38], the 2D projections of the 3D bounding box corners are detected.
However, the corners of 3D bounding boxes are virtual keypoints that physically do not
belong to the object. In Reference [32], a CNN was trained to predict vectors pointing to
the keypoints pixel-wise. A robust RANSAC based voting scheme was used to locate the
2D keypoints using these vectors. More recently, dense per pixel 2D-3D correspondences
could be obtained. Park et al. [39] used an autoencoder-decoder to generate object masks
with color to obtain the dense 2D-3D correspondences, with the RGB value representing
the predicted position in the model local coordinate.

2.3. Domain Adaptation Techniques

Several methods have been introduced to deal with the domain adaptation problem
when learning from synthetic images. Different methods are often combined in practice to
obtain improved results.

Creating synthetic images that resemble reality as much as possible (photo-realistic
rendering) is probably the most obvious solution to the problem [40,41]. However, the ma-
terial of objects and lighting in complex conditions are not easy to simulate. To increase
the realism, rendering the object context-aware is also very popular [42]. For example,
the object should be positioned on a table. This is required to detect all the plane and
its rotation in the background image. Therefore, such approaches are computationally
expensive while they tend to perform well only in controlled environments.

Domain adaptation with the help of real images from the target domain is also com-
mon. Some techniques perform some form of post-processing to the synthetic data to
increase the similarity to real images. Learning approaches can be used with pairs of
synthetic and real images [43], or Generative Adversarial Networks (GANs) [44] can be
trained to generate realistic images from synthetic images [45,46]. Small amounts of real
images can also be used to fine-tune the CNN [42].

The appearance of the RGB images can be affected a lot by the environment. So the
domain adaptation for the RGB images is inherently not easy. In contrast, depth images
provide only spatial information. The domain gap between real depth images and synthetic
depth images is much smaller than for RGB images. The texture and illuminations have
minimal effect on the depth images. Rad et al. [47] use the features from the depth images
to predict the pose. This part can be trained using synthetic datasets, since the domain gap
between depth images can be easily overcome. A mapping from the depth map features
and color images features can be trained using real RGBD images obtained from depth
sensors. Georgakis et al. [48] also learns the key points with depth images, and then learns
to match the color image features to the key point features from the depth image.

Furthermore, it is common to perform random data augmentation as domain random-
ization, for example, random noise, random brightness and contrast, random backgrounds



Sensors 2021, 21, 300 5 of 16

to object views and random textures on objects [15,49]. To further improve the diversity
of data, Reference [50] also changed the shape of 3D models to get more training images.
Trained with images from different domains, the CNN is forced to focus on the real critical
part of the image, which is not randomized, that is, objects in our case.

Unlike other works that attempt to fit one domain into another, we use a different
approach to solve the domain adaptation problem in this work. We transform both the
real and synthetic images into a new domain where visual similarity is increased and
adaptation is facilitated (details in Section 4.2). Our approach is a general approach, we do
not require any images or prior knowledge from the target domain. Our domain adaptation
method is used together with domain randomization for further improvement.

3. Problem Formulation

The 6DoF object pose can be described with a rotation and a translation from the
object coordinate system O to the camera coordinate system C. The translation part can
be expressed with a translation vector Oc ∈ R3 representing the position of the object
coordinate system origin in the camera coordinate system. The rotation can be formulated
in many different ways. In this work, we use lie algebra φco ∈ R3 with the footnote co
denotes the rotation from object coordinate to camera coordinate.

In the frame of this work, we focus on the object pose estimation relying only on the
color image, that is, given a single image, the pose of the target object should be estimated.
Training of the proposed approaches is done exclusively with synthetic data.

4. Method

We describe the entire proposed pipeline of our object pose estimation system in this
section. We first present the architecture of our SynPo-Net, which is the CNN designed
for the task at hand, together with the used loss function in Section 4.1. Subsequently, we
discuss how the predicted pose can be further refined, and the relationship between pose
refinement and object 6DoF tracking in Section 4.1.3. In the end, we discuss the synthetic
training data generation and the pencil filter as the proposed domain adaptation technique
in Section 4.2).

4.1. 6DoF Object Pose Estimation
4.1.1. SynPo-Net Architecture

Currently, most neural network structures are designed for image classification tasks.
In this paper, we argue that when using such kinds of network structures for object pose
estimation, certain modifications can improve performance. Specifically, we used the
Inception network [37] as a base network and researched the impact of input resolution,
the use of pooling layers, and the representation of rotation.

Input Resolution: Li et al. [51] first mentioned that it is not suitable to directly use
the object classification CNN as the backbone for object detection. Object classification
tasks only need to recognize the object class. For this purpose, a global overview of the
image is of high interest, which can be achieved by applying a large downsampling factor.
However, object detection methods still need to estimate the object position accurately.
The spatial resolution has more meaning in this case. This argument also applies to object
pose estimation tasks. In Reference [51], the downsampling factor is reduced to double the
output spatial resolution of the last CNN layers. Rather than reducing the downsampling
factor, we suggest increasing the resolution of the input image.

Pooling Layers: Max pooling layers are widely used in CNNs for object classifica-
tion [37,52]. To recognize object classes regardless of the object position in the image, these
CNNs are required to be less sensitive to the object position. The max pooling layer selects
only the maximum value in the reception field of the kernel. In other words, if the input
layer has been shifted within half of the kernel size, the output layer does not change.
This might be beneficial for classification tasks but not for pose regression that needs to be
sensitive even to small changes of the target position.



Sensors 2021, 21, 300 6 of 16

To avoid the use of max pooling layers, we replace them with convolutional layers.
More specifically, for max pooling layers followed by a convolutional layer, we merge them
to one convolutional layer, in which the kernel size and the stride are the same as the max
pooling layer and the number of output channels is the same as the initial convolutional
layer (see Figure 2 as an example). For max pooling layers followed by inception blocks,
we replace the max pooling layer with a convolutional layer without changing the kernel
size, the stride, and the input size so that the output channel size of the convolutional layer
equals the max pooling layer input channel size. We also replace the average pooling layers
with convolutional layers. The convolutional layers can be equivalent to average pooling
layers when the weight is learned as 1/(kernel_size2). So we suggest that this replacement
can further increase the representative capacity of the network.

Representation of Rotation: Rotation matrices, Euler angles, quaternions and lie
algebra are the most common representations of rotation. Rotation matrices can be used
directly to rotate 3D points through matrix manipulation. However, using 9 elements to
represent 3DoF transformations is unnecessarily redundant. Besides, rotation matrices
need to be normalized, which introduces additional constraints to the optimization process.

Euler angles are easy to understand as a representation, and therefore commonly
used for human-machine interaction. However, this representation is ambiguous, which
means the same rotation can be represented with various combinations of Euler angles.
Additionally, the gimbal lock problem creates essentially noncontinuous points during
interpolation. These properties make Euler angles less suitable for optimization problems.

Quaternions are compact representations that consist of only 4 parameters and are
unambiguous except that every quaternion is equal to the negative of itself. This representa-
tion also avoids the gimbal lock problem of Euler angles and allows a smooth interpolation
for rotation [53]. Nevertheless, quaternions need to be normalized, which makes them
suboptimal in regression tasks. (Details in Section 4.1.2).

Lie algebra so(3) is a representation of rotation extensively used in optimization
problems. It is a compact 3-dimensional vector that can be mapped to a rotation matrix
using the exponential map. At the same time, it is ambiguity free in an arbitrary 0 ∼ 2π
interval and does not require additional constraints. Therefore, we propose using lie
algebra as a representation of rotation for regression with a CNN.

Other CNN Structure Adjustments: To make sure the number of output channels
of the convolutional layers increases smoothly, we added more layers. Additionally,
the technique of batch normalisation [54] has been applied to accelerate the training
process, which was not used in our previous work.

Our proposed SynPo-Net is graphically represented in Figure 3.

Modified Inception Block
Input

Conv 1x1
S = 1, P = 0, 

C = C_1

Conv 3x3
S = 1, P = 1,

C = C_22

Conv 5x5
S = 1, P = 2,

C = C_32

Conv 1x1
S = 1, P = 0,

C = C_21

Conv 1x1
S = 1, P = 0,

C = C_31

Conv 3x3
S = 1, P = 1,

C = C_4

Concat

Figure 2. The proposed modified inception block. Each convolutional layer is followed by batch
normalisation and a ReLU activation layer.



Sensors 2021, 21, 300 7 of 16

Conv 7x7, S = 2, P = 3, C = 64

Conv 3x3, S = 1, P = 1, C = 80

Conv 3x3, S = 2, P = 1, C = 128

Conv 3x3, S = 1, P = 1, C = 96

Conv 3x3, S = 1, P = 1, C = 144

Conv 3x3, S = 1, P = 1, C = 160

Conv 3x3, S = 2, P = 1, C = 192

Modified Inception Block
(64, (96,128), (16,32), 32)

Conv 3x3, S = 2, P = 1, C = 480

Conv 3x3, S = 2, P = 1, C = 832

Modified Inception Block
(128, (128, 192), (32, 96), 64)

Modified Inception Block
(160, (112, 224), (24, 64), 64)

Modified Inception Block
(112, (144, 288), (32, 64), 64)

Modified Inception Block
(256, (160, 320), (32, 128), 128)

Modified Inception Block
(192, (96, 128), (16, 32), 32)

Modified Inception Block
(256, (160, 320), (32, 128), 128)

Modified Inception Block
(384, (192, 384), (48, 128), 128)

Conv 5x5, S = 3, P = 2, C = 256

Conv 1x1, S = 1, P = 0, C = 128

Fc, 1024

Fc, 6

Conv 5x5, S = 3, P = 2, C = 256

Conv 1x1, S = 1, P = 0, C = 128

Fc, 1024

Fc, 6

Conv 7x7, S = 1, P = 3, C = 1024

Fc, 2048

Fc, 6

Weighted Loss

Modified Inception Block
(128, (128, 256), (24, 64), 64)

Figure 3. The proposed SynPo-Net architecture. Each convolutional layer is followed by batch
normalization and a ReLU activation layer. The 6 (or 7) pose values regressed by the Convolu-
tional Neural Network (CNN) represent the 3D translation and 3D rotation vector of lie algebra (or
quaternion). The architecture variant with quaternions is only used for the ablation study.

4.1.2. Loss Function Definition

We used L2-norm losses for both translation and rotation regression. In our previous
work, we used quaternions to represent the rotation. In that case the loss function can be
expressed as

Lbalanced_Oc_q = ‖Oc − Ôc‖2 + αq · ‖qco− ˆqco‖2 , (1)



Sensors 2021, 21, 300 8 of 16

where Oc and qco are the predicted translation vector and rotation quaternion and Ôc
and ˆqco are the respective ground truth values. Since the predicted quaternions are not
restricted, we need to normalize them before they can be used to represent the rotation. αq
is the hyper-parameter used to balance the translation and rotation loss.

Using lie algebra to represent the rotation, the additional normalization can be avoided.
Then the loss function can be formulated as

Lbalanced_Oc_lie = ‖Oc − Ôc‖2 + αl · ‖φco− φ̂co‖2 , (2)

with φco represent the predicted lie algebra rotation and φ̂co the ground truth rotation.
Thus, the loss function with lie algebra is more straightforward for optimizing the object
rotation (without the normalization step). We used the Lbalanced_Oc_lie to train SynPo-Net.
Meanwhile, we also trained a CNN using the Lbalanced_Oc_q only for comparison. The result
can be found in the experimental section (see Section 5).

The loss functions discussed above is also calculated in the middle layers of the
network as auxiliary losses and weighted into the primary loss of the network. Those
auxiliary losses enable an effective gradient propagation in the lower layers and facilitate
the training of the deep neural network. The weighted loss, which is used for the back
propagation training, is defined as

Lweighted = γ1 · Laux_1 + γ2 · Laux_2 + γ3 · Lpri, (3)

γ1, γ2, γ3 are the hyper-parameters to adjust the effect of the auxiliary and primary loss.

4.1.3. Pose Refinement

Pose refinement is often used to improve the pose after an initial estimate is available,
which can be optionally applied after the pose prediction from CNN. This task has a lot of
similarities to frame-to-frame tracking. The tracking [21] or refinement [19,20] algorithm
takes the information from previous frame or an initial pose and performs an improvement
step of the estimate, often using geometry-based approaches. If the frame rate is high
enough, we can expect that the pose difference between 2 continuous frames is minimal.
In this case, the pose refinement algorithm can also be used for object tracking.

2D images are less sensitive to object depth translation than the object translation
within the image plane. Thus, if depth is available, a pose refinement with depth informa-
tion can help to estimate the pose very accurately. Since the LINEMOD dataset [4] also
provides depth images. Similarly to other works, we also report the result with 3D refine-
ment methods after using our proposed 2D-based estimation. We used the ICP algorithm
for the pose refinement. Only the visible surface of the object is taken into account in each
ICP iteration. The visible surface is updated after each iteration.

4.2. Training Dataset with Proposed Domain Adaptation Technique

A training dataset should cover as many as possible viewpoints of the object. Follow-
ing the dataset generation pipeline described in Reference [18], we generated images of the
objects from different viewpoints with random backgrounds from the PASCAL VOC [55]
and the IKEA [56] datasets.

We augment our rendered training data by randomly adding various effects, that
is, Gaussian noise, random contrast and brightness adjustment, motion blur, speckle
noise (see Figure 4). In the previous work, the augmentations have been applied during
the dataset generation. In this work, the augmentations are dynamically applied to the
images every time they are loaded for training the network in a random way. Thus,
the augmentations for a certain image are not fixed and the capacity of the dataset is
increased further.



Sensors 2021, 21, 300 9 of 16

Figure 4. We apply randomly different kinds of effects on synthetic images before the application
of the pencil filter. The examples of applied effects are shown from left to right: no effect, Gaussian
noise, contrast and illumination changes, motion blur, speckle noise and mixture of all effects.

Subsequently, the pencil filter is applied on the synthetic training dataset and the
resulting images are then used to train the network following the method of Reference [18].
Unlike other domain adaptation techniques, which attempt to transform one domain
to another, we transform both domains into a third intermediate domain, in which the
similarity between synthetic and real images is increased. We avoid providing color
information to the network, which can be volatile when applied across datasets with
different illumination conditions or between synthetic and real images. Also, unlike the
3D reconstructed models, the colors of CAD models are usually different from those of
the final products. We use images in the pencil filter domain where the more reliable edge
information is enhanced. In Figure 5, we present several rendered and real images with
their corresponding pencil filter version to show the increased similarity in the pencil filter
domain. This abstraction of information, apart from being effective in domain adaptation,
also allows us to decrease the input size to our network from an RGB image to a single-
channel image, positively influencing training and forward pass time.

Figure 5. To visualize the effect of the pencil filter, we render the object model with the same pose
over the real image. However, it should be noted that for training our network we only rendered the
models on random backgrounds. First row: Cropped real images from the LINEMOD dataset [4].
Second row: Real images after applying pencil filter. Third row: Rendered images with same object
pose and background as the first row. Fourth row: Rendered images after applying pencil filter.

5. Evaluation

Our evaluation results are presented in this section. We have performed an ablation
study with selected objects from the LINEMOD dataset [4] to investigate the effects of
each proposed CNN design and training decision separately. Subsequently, we compare
against the state-of-the-art by evaluating our proposed CNN on the entire LINEMOD and
TUD-L [57] datasets. LINEMOD is the most commonly used benchmark for object pose
estimation and TUD-L is a dataset focusing specifically on lighting variations.



Sensors 2021, 21, 300 10 of 16

5.1. Implementation Details

We implemented our CNN with MXNet [58] and trained the CNN on an Nvidia
GeForce GTX 2080Ti GPU (Nvidia, Santa Clara, CA, USA). We used the same CNN settings
for evaluating on both datasets. We set the hyper-parameters αq and αl both equal to 30
to balance the loss of translation and rotation, and {γ1, γ2, γ3} as {10,10,40} to balance
the effects of auxiliary losses and primary loss. We train our models using the ADAM
optimizer [59] with a learning rate of 0.0002 and parameters β1 = 0.9 and β2 = 0.99.
The models are trained for 800 epochs with a batch size of 16.

We created the training dataset with OpenGL. It consists of a number of 35,000–40,000
random poses per object. For the LINEMOD training dataset, we rendered the images
without any light effect (the object’s color is provided directly from the 3D Model). For the
TUD-L training dataset, 30% of the images are rendered without any light effect. For the
rest 70% images, we applied only diffuse reflection (according to Phong lighting model [60])
with a random light source position (no specular reflection). The pencil filter was applied
for the domain adaptation to the training and evaluation datasets.

5.2. Error Metrics

The Average Distinguishable Distance (ADD) error has been first proposed in Refer-
ence [4]. This error calculates the average distance of model points projected to the camera
domain using the predicted pose to the same model points projected using the ground
truth pose. ADD errors are compared to a threshold that is based on the object size (largest
diameter) for fairness.

For better dealing with ambiguous cases including symmetry and occlusions, the Visi-
ble Surface Discrepancy (VSD) error was proposed in Reference [61] and optimized in Ref-
erence [57]. It measures distance difference in the depth image using only the visible part
of the object in the image. The Maximum Symmetry-Aware Surface Distance (MSSD) error
introduced in Reference [62] indicates the chance of successful grasp with the robot arm by
focusing on the maximum prediction error rather than the average error in ADD. In con-
trast, maximum symmetry-aware projection distance (MSPD) is more suitable to evaluate
the RGB-only methods that are used in the Benchmark for 6DoF Object Pose Estimation
(BOP) [63]. The model points are projected into the image plane for the measurement,
which overcomes the RGB-only method’s weakness. To take full advantage of the different
metrics, a method’s average performance with the VSD, MSSD, and MSPD is used as the
bop performance score. In our experiments, we use suitable metrics that allow comparison
to the related state-of-the-art works. More specifically, we use ADD error for the evaluation
of LINEMOD dataset and use bop performance score for the evaluation of TUD-L dataset.

5.3. Ablation Study
5.3.1. The Pencil Filter Effect

In our previous work [18], we have already presented a qualitative proof that the
accuracy can be improved by applying the pencil filter for domain adaptation. In this
work, we try to intuitively represent the effect of pencil filter in reducing the difference
between the real and synthetic images. We made the following experiment similar to
in Reference [64].

We trained two networks separately with the same synthetic images of an object. One
of them was trained with single-channel pencil images, and the other was trained with
RGB images. Then we rendered the object above the real images with the corresponding
ground truth pose. We test how the CNN is activated differently based on both types
of images (the rendered images and the original real images). We passed both types of
images to the network to observe the absolute differences in the feature map after the third
modified inception block, based on which the first auxiliary pose is predicted.

We first calculate the average absolute difference of this layer with all the images for
the camera (cam) and watering can (can) in the LINEMOD dataset. The difference can be



Sensors 2021, 21, 300 11 of 16

qualitatively represented with Figure 6. It is obvious that the maximum difference of the
synthetic image and the real image is smaller in the pencil domain.

Figure 6. We compare the difference in activation of a CNN layer for a network trained with pencil
images and with RGB images to illustrate the domain adaptation efficiency.

We also quantitatively report the {max absolute difference, mean absolute differ-
ence, standard deviation of absolute difference} in this averaged feature map of Figure 6.
For the cam object trained with the pencil image, these values are {0.1254, 0.0126, 0.1146},
and trained with RGB images {0.1707, 0.0127, 0.1473} respectively. Despite the fact that pose
estimation for the cam object has relatively low accuracy for our approach (see Section 5.4),
the pencil filter still helps overcome the gap between the synthetic images and the real
images. We achieved an outstanding result with the can object, and naturally, the absolute
difference is even smaller than the case of the camera. For the network trained for the
watering can, trained with pencil images, the values are {0.11309, 0.0159, 0.114}, and trained
with RGB images {0.1414, 0.0137, 0.1398} respectively.

5.3.2. CNN Architecture Modification Effects

Our main ablation study results are presented in Table 1. Here, we evaluate the
influence on the pose estimation accuracy for each one of the proposed ideas. We use the
driller object of the LINEMOD dataset as an example and evaluate all proposed CNN
modifications in this paper. The pencil filter was applied in all experiments. In the first five
experiments, batch normalization was not used, and we set their learning rate to 0.0001 and
batch-size of 32 to make full use of the GPU Memory. The CNN in the second experiment
corresponds to our previous work [18]. The result in the second experiment is slight better
than we reported in Reference [18], because we adjusted the {γ1, γ2, γ3} values. The last
experiment with all the modifications corresponds to our proposed SynPo-Net, the training
settings are described in Section 5.1.

According to the Table 1, we can see that all the proposed modifications in this paper
truly help in improving the CNN’s performance for object pose estimation. Also, results
indicate that the amount of data plays a crucial role. By applying random augmentations
after the images have been loaded, we manage to increase the dataset diversity further and
have a positive effect on the results.



Sensors 2021, 21, 300 12 of 16

Table 1. We evaluated the proposed contributions in an ablation study. The networks have been tested with the Driller
object of the LINEMOD dataset using the Average Distinguishable Distance (ADD) metric with a threshold of 10%. Dynamic
augmentation means that the random augmentations will be applied after the images have been loaded for training (as we
also mentioned in the end of Section 4.2). The details of other modifications in the table are described in Section 4.1.1.

Input resolution (448 vs. 224)
√ √ √ √ √ √

Replace Pooling layers
√ √ √ √

Lie algebra
√ √ √ √

Dynamic Augmentation
√ √

Other CNN structure adjustments
√

ADD 10 14.06 15.57 (+1.51) 18.01 (+2.44) 19.95 (+1.94) 22.22 (+2.27) 41.75 (+19.53) 53.7 (+11.95)

5.4. LINEMOD Dataset State of the Art Comparison

We summarise the result of different methods on LINEMOD in Table 2 for comparison.
The methods are divided into two groups based on the data type used for training. Our
proposed CNN outperforms the state-of-the-art using synthetic training AAE [36] by a
large margin for most objects and on average. However, their approach deals better with
symmetric objects such as the glue and eggbox. Our approach removes color information
and focuses more on edge information. The 3D model of the eggbox is coarse, which
could also influence the quality of synthetic training datasets. Our CNN also performs
weakly with the camera object. According to Figure 6, we can attribute the cause to the
difference between the real image and synthetic image, as domain adaptation is not that
successful in this case. Overall, our proposed method clearly shows the best-reported
results thus far when training with synthetic data, and even exceeds Brachmann [65] and
BB8 [16] which have been trained with real images. For further comparison, we also
trained Pix2Pose [39] and YOLO6D [38] using the same synthetic images as ours (with all
augmentations applied). For Pix2Pose [39], we provided the ground truth 2D detection
bounding box. It is interesting to note that in contrast to the result when trained using real
images, Pix2Pose [39] has a poor performance when trained using synthetic images. We
think the dense-correspondence matching methods focus on the appearance of the object
in pixel-level. Thus they are easier to overfit to the synthetic images and have problems
generalizing to the real images, when trained solely using synthetic images.

Table 2. Evaluation results on the LINEMOD dataset using the ADD metric with a threshold of 10%, using RGB images
only and no pose refinement. Higher is better. *: We trained YOLO6D [38] and Pix2Pose [39] using the same synthetic
images as ours.

Training Data Synthetic Images Real Images

Method SSD6D
[15]

Rambach
[18]

Pix2Pose *
[39]

YOLO6D *
[38]

AAE
[36] OURS Brachmann

[65]
BB8
[16]

YOLO6D
[38]

Posecnn
[33]

Pix2Pose
[39]

Ape 0.00 4.37 3.64 16.09 4.18 23.14 − 27.90 21.62 − 58.10
Benchvise 0.18 21.74 3.95 33.91 22.85 75.23 − 62.00 81.80 − 91.10

Cam 0.41 1.25 0.00 2.91 32.91 6.66 − 40.10 36.57 − 60.90
Can 1.35 2.09 16.55 20.98 37.03 65.05 − 48.10 68.80 − 84.40
Cat 0.51 2.54 20.18 27.14 18.68 36.22 − 45.20 41.82 − 65.00

Driller 2.58 12.46 28.96 24.66 24.81 53.70 − 58.60 63.51 − 76.30
Duck 0.00 4.78 0.23 20.17 5.86 19.54 − 32.80 27.23 − 43.80

Eggbox 8.90 1.43 0.00 2.31 81.00 3.86 − 40.00 69.58 − 96.80
Glue 0.00 7.38 7.29 15.00 46.17 41.80 − 27.00 80.02 − 79.40

Holepuncher 0.30 3.88 2.51 15.44 18.20 21.10 − 42.40 42.63 − 74.80
Iron 8.86 38.22 1.82 57.63 35.05 85.07 − 67.00 74.97 − 83.40

Lamp 8.20 27.35 30.15 26.75 61.15 78.65 − 39.90 71.11 − 82.00
Phone 0.18 5.39 31.94 14.80 36.27 63.61 − 35.20 47.74 − 45.00

Mean 2.42 10.22 11.32 21.43 32.63 44.13 32.30 43.60 55.95 62.7 72.40

In Table 3 we also report the results when ICP pose refinement is applied using depth
images. Our result is better than that of Reference [36] after applying pose refinement as
well. However, the projective ICP that was applied in Reference [15] takes leverage of both



Sensors 2021, 21, 300 13 of 16

image and depth information and performs still best on average. This pose refinement
approach is nevertheless not openly available for testing and experimentation. In any case,
our approach still outperforms SSD-6D [15] on 9 out of 13 objects of the dataset.

Table 3. Results on LINEMOD dataset using the ADD metric with a threshold of 10%, when depth information is used for
pose refinement. Higher is better.

Method Ape B.Vise Cam Can Cat Driller Duck E.Box Glue Holep. Iron Lamp Phone Mean

SSD6D [15] + P. ICP 65.00 80.00 78.00 86.00 70.00 73.00 66.00 100.00 100.00 49.00 78.00 73.00 79.00 79.00
AAE [36] + ICP 24.35 89.13 82.10 70.82 72.18 44.87 54.63 96.62 94.18 51.25 77.86 86.31 86.24 71.58
OURS + ICP 65.86 94.98 35.30 94.82 79.81 83.50 57.26 3.86 73.28 68.63 96.18 94.70 91.59 72.29

5.5. TUD-L Dataset State of the Art Comparison

The TUD-L dataset contains three household objects under challenging light condi-
tions. We summarize the bop performance score [63] (as we described in Section 5.2) in
Table 4. Object 2 (Frog) does not have an outstanding contour difference in different poses,
and thus its pose is harder to be estimated than the other two objects. Still, our method
shows superior performance against the other methods.

Table 4. Results on the TUD-L dataset using the bop performance score. Higher is better. (The result
of AAE and Pixel2Pose are taken from bop website [63] on 31 July 2019).

Method AAE [36] Pixel2Pose [39] OURS

Obj1 (Dragon) − − 47.35
Obj2 (Frog) − − 35.88

Obj3 (Watering Can) − − 59.80

mean 40.1 34.9 47.67

5.6. Runtime Evaluation

The frame processing rate achieved by state of the art methods is summarised in
Table 5. The methods are tested with different hardware (GTX 1080 or Titan X Pascal).
We used an RTX 2080 Ti, which is considered about 30% faster than Titan X Pascal [66].
Taken the hardware difference into consideration, our CNN should be able to run about
65/(1+ 30%) = 50 fps in Titan X. To summarize, we show that our CNN for pose estimation
performs favorably against the state-of-the-art not only in terms of accuracy but also in
terms of speed.

Table 5. Inference time of methods without refinement, according to Reference [36].

Method fps

SSD6D [15] 12

AAE [36] 13 (RetinaNet)
42 (SSD)

BB8 [16] 4
Brachmann [65] 2
YOLO6D [38] 50

OURS 65

6. Conclusions

In this work, we proposed SynPo-Net, a novel CNN-based approach for 6DoF object
pose estimation trained exclusively with RGB synthetic images reduced to single-channel
images in pre-processing. We support the idea that neural network architectures need to
be adjusted to the specific task of pose regression instead of relying on network layouts
designed for classification. We address the domain adaptation problem by transforming
synthetic and real images into a new domain with increased similarity. The results of an



Sensors 2021, 21, 300 14 of 16

extensive experimental evaluation support our claims. In an ablation study, we showed
how each proposed change to the network increases the pose accuracy. The comparison on
the LINEMOD and TUD-L datasets proves that our method outperforms the existing state
of the art in both accuracy and inference time. In future work, we plan to use our CNN as
the backbone network for multi-object pose estimation.

Author Contributions: Conceptualization, Y.S. and J.R.; Data curation, Y.S. and J.R.; Formal analysis,
Y.S. and J.R.; Funding acquisition, J.R. and D.S.; Investigation, Y.S.; Methodology, Y.S. and J.R.; Project
administration, J.R. and A.P.; Resources, J.R.; Software, Y.S. and J.R.; Supervision, J.R., A.P. and D.S.;
Validation, Y.S.; Writing—original draft, Y.S.; Writing—review & editing, J.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partially funded by the INNOPROM Rheinland Pfalz/EFFRE funding
program (P1-SZ2-7, 84002637) in cooperation with John Deere GmbH & Co. KG.

Acknowledgments: We are thankful to Xiaoying Tan for proofreading the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bahrin, M.A.K.; Othman, M.F.; Azli, N.N.; Talib, M.F. Industry 4.0: A review on industrial automation and robotic. J. Teknol. 2016,

78, 137–143.
2. Rambach, J.; Pagani, A.; Stricker, D. Augmented Things: Enhancing AR Applications leveraging the Internet of Things and

Universal 3D Object Tracking. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR)
2017, Nantes, France, 9–13 October 2017.

3. Zhu, Z.; Branzoi, V.; Wolverton, M.; Murray, G.; Vitovitch, N.; Yarnall, L.; Acharya, G.; Samarasekera, S.; Kumar, R. AR-mentor:
Augmented reality based mentoring system. In Proceedings of the IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), Munich, Germany, 10–12 September 2014; pp. 17–22.

4. Hinterstoisser, S.; Lepetit, V.; Ilic, S.; Holzer, S.; Bradski, G.; Konolige, K.; Navab, N. Model based training, detection and pose
estimation of texture-less 3d objects in heavily cluttered scenes. In Proceedings of the Asian conference on computer vision
(ACCV), Daejeon, Korea, 5–9 November 2012; pp. 548–562.

5. Vidal, J.; Lin, C.Y.; Martí, R. 6D pose estimation using an improved method based on point pair features. In Proceedings of the
International Conference on Control, Automation and Robotics (ICCAR), Auckland, New Zealand, 20–23 April 2018; pp. 405–409.

6. Hinterstoisser, S.; Cagniart, C.; Ilic, S.; Sturm, P.; Navab, N.; Fua, P.; Lepetit, V. Gradient response maps for real-time detection of
textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 876–888. [CrossRef] [PubMed]

7. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

9. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Annual Conference on Neural Information Processing Systems 2015, Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

10. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
11. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
12. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Van Der Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning

optical flow with convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

13. Kendall, A.; Grimes, M.; Cipolla, R. Posenet: A convolutional network for real-time 6-dof camera relocalization. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 2938–2946.

14. Kendall, A.; Cipolla, R. Geometric loss functions for camera pose regression with deep learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5974–5983.

15. Kehl, W.; Manhardt, F.; Tombari, F.; Ilic, S.; Navab, N. SSD-6D: Making RGB-based 3D detection and 6D pose estimation great
again. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 22–29.

16. Rad, M.; Lepetit, V. BB8: A scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects
without using depth. In Proceedings of the International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
Volume 1, p. 5.

17. Sundermeyer, M.; Marton, Z.C.; Durner, M.; Brucker, M.; Triebel, R. Implicit 3d orientation learning for 6d object detection from
rgb images. In Proceedings of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September
2018; pp. 699–715.

http://doi.org/10.1109/TPAMI.2011.206
http://www.ncbi.nlm.nih.gov/pubmed/22442120
http://dx.doi.org/10.1109/TPAMI.2016.2644615


Sensors 2021, 21, 300 15 of 16

18. Rambach, J.; Deng, C.; Pagani, A.; Stricker, D. Learning 6dof object poses from synthetic single channel images. In Proceedings
of the IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) 2018, Munich, Germany,
16–20 October 2018; pp. 164–169.

19. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. Sensor Fusion IV: Control Paradigms and Data Structures. Int. Soc.
Opt. Photonics 1992, 1611, 586–607.

20. Manhardt, F.; Kehl, W.; Navab, N.; Tombari, F. Deep model-based 6d pose refinement in rgb. In Proceedings of the European
Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018; pp. 800–815.

21. Drummond, T.; Cipolla, R. Real-time visual tracking of complex structures. IEEE Trans. Pattern Anal. Mach. Intell. 2002,
24, 932–946. [CrossRef]

22. Marion, P.; Florence, P.; Manuelli, L.; Tedrake, R. Label Fusion: A Pipeline for Generating Ground Truth Labels for Real RGBD
Data of Cluttered Scenes. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018,
Brisbane, Australia, 21–25 May 2018; pp. 1–8.

23. Available online: https://visionlib.com/ (accessed on 1 March 2020).
24. Kehl, W.; Tombari, F.; Navab, N.; Ilic, S.; Lepetit, V. Hashmod: A hashing method for scalable 3D object detection. arXiv 2016,

arXiv:1607.06062.
25. Tejani, A.; Tang, D.; Kouskouridas, R.; Kim, T.K. Latent-class hough forests for 3D object detection and pose estimation.

In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 462–477.
26. Drost, B.; Ulrich, M.; Navab, N.; Ilic, S. Model globally, match locally: Efficient and robust 3D object recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 998–1005.
27. Wohlhart, P.; Lepetit, V. Learning descriptors for object recognition and 3d pose estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) 2015, Boston, MA, USA, 7–12 June 2015; pp. 3109–3118.
28. Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; Navab, N. Deep learning of local RGB-D patches for 3D object detection and 6D

pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands,
11–14 October 2016; pp. 205–220.

29. Li, C.; Bai, J.; Hager, G.D. A unified framework for multi-view multi-class object pose estimation. In Proceedings of the European
Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018; pp. 254–269.

30. Wang, C.; Xu, D.; Zhu, Y.; Martín-Martín, R.; Lu, C.; Li, F.; Savarese, S. Densefusion: 6d object pose estimation by iterative
dense fusion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA,
16–20 June 2019; pp. 3343–3352.

31. He, Y.; Sun, W.; Huang, H.; Liu, J.; Fan, H.; Sun, J. PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose
Estimation. arXiv 2019, arXiv:1911.04231.

32. Peng, S.; Liu, Y.; Huang, Q.; Zhou, X.; Bao, H. Pvnet: Pixel-wise voting network for 6dof pose estimation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA, USA, 16–20 June 2019; pp. 4561–4570.

33. Xiang, Y.; Schmidt, T.; Narayanan, V.; Fox, D. PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in
Cluttered Scenes. arXiv 2017, arXiv:1711.00199.

34. Do, T.T.; Pham, T.; Cai, M.; Reid, I. Real-time monocular object instance 6d pose estimation. In Proceedings of the British Machine
Vision Conference (BMVC), Newcastle, UK, 3–6 September 2018; Volume 1, p. 6.

35. Su, Y.; Rambach, J.; Minaskan, N.; Lesur, P.; Pagani, A.; Stricker, D. Deep Multi-state Object Pose Estimation for Augmented Reality
Assembly. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct),
Beijing, China, 10–18 October 2019; pp. 222–227.

36. Sundermeyer, M.; Marton, Z.C.; Durner, M.; Triebel, R. Augmented Autoencoders: Implicit 3D Orientation Learning for 6D
Object Detection. Int. J. Comput. Vis. 2020, 128, 714–729. [CrossRef]

37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015, Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

38. Tekin, B.; Sinha, S.N.; Fua, P. Real-time seamless single shot 6d object pose prediction. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 292–301.

39. Park, K.; Patten, T.; Vincze, M. Pix2pose: Pixel-wise coordinate regression of objects for 6d pose estimation. In Proceedings of the
IEEE International Conference on Computer Vision 2019, Seoul, Korea, 27–28 October 2019; pp. 7668–7677.

40. Mitash, C.; Bekris, K.; Boularias, A. A self-supervised learning system for object detection using physics simulation and
multi-view pose estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 545–551.

41. Movshovitz-Attias, Y.; Kanade, T.; Sheikh, Y. How useful is photo-realistic rendering for visual learning? In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 202–217.

42. Wang, H.; Sridhar, S.; Huang, J.; Valentin, J.; Song, S.; Guibas, L.J. Normalized object coordinate space for category-level 6d object
pose and size estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach,
CA, USA, 16–20 June 2019; pp. 2642–2651.

43. Csurka, G. Domain adaptation for visual applications: A comprehensive survey. arXiv 2017, arXiv:1702.05374.

http://dx.doi.org/10.1109/TPAMI.2002.1017620
https://visionlib.com/
http://dx.doi.org/10.1007/s11263-019-01243-8


Sensors 2021, 21, 300 16 of 16

44. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, QC, Canada, 8–13 December
2014; pp. 2672–2680.

45. Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised pixel-level domain adaptation with generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 3722–3731.

46. Shrivastava, A.; Pfister, T.; Tuzel, O.; Susskind, J.; Wang, W.; Webb, R. Learning from simulated and unsupervised images through
adversarial training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2107–2116.

47. Rad, M.; Oberweger, M.; Lepetit, V. Domain transfer for 3d pose estimation from color images without manual annotations.
In Proceedings of the Asian Conference on Computer Vision 2018, Perth, Australia, 2–6 December 2018; pp. 69–84.

48. Georgakis, G.; Karanam, S.; Wu, Z.; Kosecka, J. Learning local rgb-to-cad correspondences for object pose estimation. In Proceed-
ings of the IEEE International Conference on Computer Vision 2019, Seoul, Korea, 27–28 October 2019; pp. 8967–8976.

49. DeTone, D.; Malisiewicz, T.; Rabinovich, A. Toward geometric deep SLAM. arXiv 2017, arXiv:1707.07410.
50. Su, H.; Qi, C.R.; Li, Y.; Guibas, L.J. Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model

views. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 2686–2694.

51. Li, Z.; Peng, C.; Yu, G.; Zhang, X.; Deng, Y.; Sun, J. Detnet: A backbone network for object detection. arXiv 2018, arXiv:1804.06215.
52. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
53. Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Datalogisk Institut, Københavns Universitet:

Copenhagen, Denmark, 1998; Volume 2.
54. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,

arXiv:1502.03167.
55. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
56. Lim, J.J.; Pirsiavash, H.; Torralba, A. Parsing ikea objects: Fine pose estimation. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), Sydney, Australia, 1–8 December 2013; pp. 2992–2999.
57. Hodan, T.; Michel, F.; Brachmann, E.; Kehl, W.; GlentBuch, A.; Kraft, D.; Drost, B.; Vidal, J.; Ihrke, S.; Zabulis, X.; et al. BOP:

Benchmark for 6D object pose estimation. In Proceedings of the European Conference on Computer Vision (ECCV) 2018,
Munich, Germany, 8–14 September 2018; pp. 19–34.

58. Available online: https://mxnet.apache.org/ (accessed on 1 March 2020).
59. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
60. Phong, B.T. Illumination for computer generated pictures. Commun. ACM 1975, 18, 311–317. [CrossRef]
61. Hodaň, T.; Matas, J.; Obdržálek, Š. On evaluation of 6D object pose estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 606–619.
62. Drost, B.; Ulrich, M.; Bergmann, P.; Hartinger, P.; Steger, C. Introducing mvtec itodd-a dataset for 3d object recognition in

industry. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 2200–2208.

63. Available online: https://bop.felk.cvut.cz/home/ (accessed on 1 March 2020).
64. Rad, M.; Oberweger, M.; Lepetit, V. Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic

Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA,
18–22 June 2018; pp. 4663–4672.

65. Brachmann, E.; Michel, F.; Krull, A.; Ying Yang, M.; Gumhold, S. Uncertainty-driven 6d pose estimation of objects and scenes
from a single rgb image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 3364–3372.

66. Available online: https://gpu.userbenchmark.com/Compare/Nvidia-Titan-X-Pascal-vs-Nvidia-RTX-2080-Ti/m158352vs4027
(accessed on 1 March 2020).

http://dx.doi.org/10.1007/s11263-009-0275-4
https://mxnet.apache.org/
http://dx.doi.org/10.1145/360825.360839
https://bop.felk.cvut.cz/home/
https://gpu.userbenchmark.com/Compare/Nvidia-Titan-X-Pascal-vs-Nvidia-RTX-2080-Ti/m158352vs4027

	Introduction
	Related Work
	RGB-D Object Pose Estimation
	RGB Object Pose Estimation
	Domain Adaptation Techniques

	Problem Formulation
	Method
	6DoF Object Pose Estimation
	SynPo-Net Architecture
	Loss Function Definition
	Pose Refinement

	Training Dataset with Proposed Domain Adaptation Technique

	Evaluation
	Implementation Details
	Error Metrics
	Ablation Study
	The Pencil Filter Effect
	CNN Architecture Modification Effects

	LINEMOD Dataset State of the Art Comparison
	TUD-L Dataset State of the Art Comparison
	Runtime Evaluation

	Conclusions
	References

