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Abstract. This paper presents a vision-based ladle monitoring system
for steel factories, consisting of two modules: one for ladle surface temper-
ature analysis using thermal cameras and another for deep learning-based
detection and recognition of ladle identi�cation numbers. The �rst mod-
ule monitors ladle thermal behavior by capturing high-resolution ther-
mal images and employing advanced image analysis techniques. This
enhances safety and e�ciency in steel production. The second module
focuses on digit recognition on the ladle surface, providing crucial identi-
�cation and tracking information. A robust deep learning model trained
on a large dataset of thermal camera images achieves high accuracy in
ladle identi�cation. The proposed system integrates thermal cameras and
advanced image analysis techniques, o�ering real-time monitoring, early
anomaly detection, and accurate ladle identi�cation. Experimental eval-
uations demonstrate its e�ectiveness, indicating its potential for practical
implementation in steel factory environments.

Keywords: Ladle monitoring · Thermal cameras · Deep Learning · Steel
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1 Introduction

A ladle is a steel vessel used for transporting liquid steel in a factory. E�cient
coordination of ladle movements is crucial to minimize heat losses and ensure
optimal supply. The lifetime of a ladle depends on refractory lining wear, which
can have signi�cant economic and safety impacts if not addressed promptly.
Premature retirement of ladles increases refractory costs and overall production
expenses. Currently, ladle lifetime decisions rely on visual observations by expe-
rienced personnel. However, existing commercial laser measuring systems lack
precision in assessing the remaining refractory layer, mainly focusing on major
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cracks. Quality monitoring using cameras in the industry has revolutionized man-
ufacturing processes, enabling real-time visual inspections that enhance product
consistency and minimize defects [6], [5]. These advanced camera systems not
only detect imperfections but also provide valuable data for process optimization,
ensuring higher standards of quality control. Thermal cameras o�er the ability
to monitor ladle surface temperature, detect refractory wear-related issues, and
track temperature changes. This allows for the identi�cation of hotspots near
breakout risks and the prediction of future ladle behavior by analyzing tempera-
ture evolution along di�erent pro�les. As ladle parts experience varying thermal
history and wear, thermal monitoring provides a comprehensive evaluation of
both current and future ladle states.

Considering the cycle of a ladle from the Electric Arc Furnace (EAF) to the
casting station, the ladle is tracked and identi�ed by the factory system. However,
tracking and identi�cation are not accurately performed at the cleaning and
preheating stations. As a result, the time spent by the ladles at these stations
is not precisely calculated. This time information is valuable for planning ladle
usage in heats. If a ladle spends a short time after cleaning at the burners, it
requires less preheating before it can be used in the next heat. Therefore, ladle
identi�cation at these stations is important. Each ladle in the steel factory has a
speci�c number written on its body using steel pieces. The ladle number is welded
on the surface, typically in multiple locations. Computer vision techniques can be
employed to locate and identify the ladle number accurately. However, the harsh
environment at the steel factory, including dust, can obstruct vision. Therefore,
careful consideration and study are required when choosing cameras for this
task. Color and thermal images have been explored for ladle tracking, each with
its own advantages and disadvantages compared to the other.

The innovation of the proposed method lies in its comprehensive approach
to ladle monitoring within steel factories. By combining thermal cameras and
advanced image analysis techniques, this system not only tracks ladle surface
temperatures with precision but also achieves digit recognition for ladle identi�-
cation numbers through deep learning. This integrated approach enhances safety
and e�ciency in steel production, o�ering real-time monitoring, early anomaly
detection, and accurate ladle identi�cation, ultimately paving the way for prac-
tical implementation in industrial environments.

2 Ladle Surface Monitoring

The measurements for working on the thermal characterization of the ladles were
made with a Flir a655sc microbolometric camera [7]. Microbolometer FPAs can
be created from metal or semiconductor materials and operate according to non-
quantum principles. This means that they respond to radiant energy in a way
that causes a change of state in the bulk material (i.e., the bolometer e�ect).
Generally, microbolometers do not require cooling, which allows compact camera
designs that are relatively low in cost [8]. Thermal images were captured at the
billet casting machine turret position. The turret holds ladles for casting and
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allows quick ladle changes using its two arms. While one ladle is being cast, an
empty ladle can be loaded from the opposite side. The thermal camera measures
the ladle in this opposite position. During casting, the ladle is �lled with hot
steel, and after emptying, it appears empty in the camera. The system consists
of acquisition, data extraction, and data analysis nodes.

The acquisition node captures data from the thermal camera and �lters the
sequences to store only necessary and non-redundant information. It monitors
a speci�c directory where the camera saves thermal sequences and related data
in a format speci�c to the camera and software (e.g., ".seq" �les generated by
ResearchIR software from FLIR). Whenever a new �le is added to the directory,
the acquisition node algorithm processes it. The algorithm converts the raw data
of each sequence into a 3D array, F(i,j,t), with dimensions determined by the
camera's pixel resolution and the number of frames captured over time. This
stage selects the optimal frame for post-processing based on two criteria. First,
the frame must have a maximum temperature exceeding 400°C to ensure a ladle
is present in the camera's �eld of view. Second, the chosen frame minimizes the
absolute mean optical �ow per frame. This criterion accounts for the stationary
period of the ladle after the crane positions it in the tower, as well as its rest
period before being lifted again after the casting process.

Fig. 1. Ladle recognition algorithm

After the selection of the most appropriate frame, a pre-processing has been
developed to eliminate areas that are not of interest for the posterior analysis,
such as background, re�ections or defective pixels. The steps taken are described
below and the e�ect of each step can be appreciated in Figure 1. The algorithm
takes the frame selected on previous paragraph. Every pixel with a temperature
value below of 150 Cº is discarded. The greatest continuous area is detected, and
every other area is discarded. Afterwards, some morphological transformations
are applied. A 50 iterations dilation with a 5x5 pixel is followed by an erosion of
the same characteristics. Every pixel is discarded if the non-masked pixel amount
in its row or column does not surpass the thresholding value of 60 pixels. The
mask is cropped so that only the relevant area of the image is saved. The output
image is resized with the same dimensions as the mask.



4 Selim et al.

Thanks to this pre-processing, the ladle is centred in the stored image, and
it is ready be sent to the data extraction node for obtaining the information
within the image and posterior data analysis. Besides this, the total amount of
information transmitted between nodes is reduced to the minimum necessary,
optimizing times in the processing. With this stage, the acquisition node con-
cludes its work, reading a �le in a speci�c format, and returning the resized
image, mask and the metadata stored in the recording �le.

Fig. 2. Graphical description of the ladle's
zones

The objective of the data extrac-
tion node is to extract data from
the input provided by the acquisition
node for posterior data analysis. The
extracted data is stored within the
image, but for communication pur-
poses, it is necessary to reduce the
data amount to avoid saturating the
architecture. The refractory degrada-
tion depends on the material it comes
in contact with. Three zones can be
distinguished in a ladle: the air zone,
the slag zone, and the barrel zone. The
ladle's nerves are used to di�erentiate
these zones. The algorithm then iden-
ti�es the hottest spots in each zone.
The information from the acquisition
node and the ladle's life cycle is com-
bined and stored in a JSON �le, sig-
ni�cantly reducing the data size. To
establish a uni�ed coordinate system, a center is determined for each image,
which serves as a common reference point. Arti�cial vision techniques are em-
ployed to locate the nerves or interfaces between the di�erent zones. Finally, the
extracted information, including data from the sequence �le, caster-provided
data, segmentation details, and thermal data, is stored in the JSON �le, includ-
ing temperature values, spot localization, and other relevant information.

Fig. 3. Di�erent size hottest areas for unique measurement in the slag zone (red) and
in the barrel zone (blue). (a) 5x5 area, (b) 30x30 area and (c) 50x50 area
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Fig. 4. Ladle 11 temperature analysis for areas (a) 5x5, (b) 30x30 and (c)50x50

Observing the 5x5 chart (Figure [ref�g5a]), the e�ect of molten steel in the
bottom of the ladle (barrel zone) is evident, with noticeably higher temperature
values compared to other curves. However, there is an anomaly in the curve (use
27) where the temperature measured was lower but still in�uenced by molten
steel. Analyzing the other three curves in Figure 9a, two main conclusions can
be drawn. First, the slag zone slightly heats up during the casting process, as
indicated by higher after-casting temperatures. Second, temperature values in
the slag zone are vaguely higher than in the barrel zone (pre-casting), possibly
due to more signi�cant slag erosion compared to molten steel. Figures 4 a-c
con�rm that temperatures after casting are slightly higher. Vertical pro�les can
provide more information about the casting process than individual temperature
spots.

When considering larger areas (Figure 4 b-c), the previously mentioned pat-
terns are not visible. Barrel temperatures are higher than those in the slag zone,
with a greater di�erence in larger areas. Two reasons explain this: �rst, the
larger areas partially cover the colder nerves, which are colder than the rest of
the ladle surface. Second, temperature distribution is more homogeneous in the
barrel zone, while the slag zone has hot spots closer to colder areas, leading to
counterproductive e�ects on the overall mean temperature of the hottest area.

3 Ladle Tracking

Although several methods [2] [9], [3] [1] and datasets [4] were introducted for
number detection, they are not suitable to be used in steel factories domain be-
cause of the image appearance di�eence. In steel factories, the environment is
dark, dusty, and usually very hot. Color cameras typically have higher resolution
compared to thermal cameras. Initially, the detection algorithm was developed
using thermal images, and later sample color images were examined. The color
images revealed challenges in detecting the ladle number due to low contrast
with the ladle surface, especially in a harsh, dusty environment. Additionally,
using RGB color cameras raises concerns about worker security and data privacy
in the steel factory setting. Investigating the thermal images revealed the follow-
ing observations. The resolution of the thermal camera is smaller compared to
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Fig. 5. Thermal Data preprocessing pipeline.

color cameras, with a resolution of 388x288 pixels in the installed camera at the
steel factory cleaning station. Despite the smaller size, the numbers can still be
detected due to the temperature contrast between the number and the ladle's
surface. In contrast, the provided RGB images pose di�culty in identifying the
ladles. One thermal image in the �gure shows two identi�able digits, with the
digit shown in green and the surrounding area in red or a mix of green and red.
The algorithm's objective is to locate and identify the number on the ladle's
surface.

The ladle is the main object of interest in the camera's view and the hottest
spot. The ladle's number is welded on its surface at least once, and the contrast
di�erence between the ladle's surface and the number is important. Image pre-
processing techniques were applied to enhance this contrast. Figure 5 shows the
results of di�erent pre-processing techniques applied to thermal images. Figure
5 illustrates the image pre-processing techniques used on the thermal data. The
original heat map is shown in sub�gure (a), which is represented in grayscale as
a one-channel image to capture heat variation. Histogram equalization (sub�g-
ure (b)) enhances details in the image, revealing background information of the
cleaning station that was not visible in the original image. To eliminate this back-
ground data, thresholding is applied (sub�gure (c)), squashing the corresponding
pixels to zero. The �nal image is obtained by applying histogram equalization to
the thresholded image, enhancing the contrast between the ladle's number and
the surrounding (colder) pixels. This contrast enhancement is crucial for ladle
number identi�cation. At the cleaning station, a thermal camera is installed with
an adjusted perspective to acquire a better view of the ladles. The output of the
camera is a two-dimensional array containing pixel temperatures. The initial
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Fig. 6. Synthetic data generation pipeline

data provided for the project was from the old perspective, which was su�cient
for initial experiments but not suitable for model validation. The thermal data
is a one-channel, two-dimensional image, and generating a heat map results in
a three-channel RGB image, regardless of the color scales used.

Thermal data consisting of approximately 20,000 images covering a period of
around 3 months was shared. Each image was checked, and those containing a
visible number were annotated with the number's bounding box and class (e.g.,
class 2 for ladle number 2). This annotation process resulted in a dataset of
approximately 1,200 images. However, the data had an imbalance issue. Ladle
2 appeared approximately 700 times, while ladle 12 appeared only 49 times. To
address this, synthetic data was generated to validate the developed method.
The synthesized images were created to ensure a balanced representation of all
classes. The speci�c ladle numbers used in the steel factory (ladles 1, 2, 8, 10,
11, 12, 14, 15, 16, and 17) were taken into account during the data synthesis
process.

Fig. 7. Ladle images histograms

Twenty seven images were selected
to be used as background images. The
27 images were annotated with a loca-
tion to add the digit at, and a line con-
sisting of two points to represent the
orientation of the ladle. The angle of
the line can be computed and used to
rotate the number before resizing and
adding it at the bounding box loca-
tion. Since the number is colder than
the surrounding surface. The intensity
of the number was set to the reduced value of the average intensity of the bound-
ing box. Having 27 images would provide a good variation in the background.
However, it is not su�cient to generate hundreds of images to try to balance the
real data with the synthetic ones. Consequently, image translation was applied
on the whole background image.
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The ladle tracking task can be decomposed into two main problems, number
detection in the thermal image, and number classi�cation of the detected num-
ber. In the proposed solution, the numbers are modelled as object, thus making
it an object detection task. In the proposed solution, and since there are a lim-
ited number of ladles, each ladle number is considered a class. Consequently in
the developed model, the data has 10 classes. There are several methods that
exist in literature for object detection. One of the state of the are methods is
the Faster RCNNs. This methods belongs to the region proposal-based methods
for object detection. The method has two deep neural networks, one for each
sub task. The �rst one is for proposing the region where the number could ex-
ist in. The second network is for the number classi�cation. The Faster-RCNNs
can be implemented using several networks as backbone. In the proposed im-
plementation, Residual Networks ResNet-50 was employed. The training is done
in a supervised learning-based fashion. The labelled data is used to train the
networks. The annotations either from the real or the synthetic data are in the
training.

Fig. 8. Confusion Matrix (a) Real Data, (b) Real and Synthetic Data

Experiments and Results Initial experiments were conducted using real data,
which consisted of approximately 1200 annotated images. The dataset was di-
vided into 70% for training and 30% for testing. Faster-RCNN Region-Proposal-
Network was utilized with pre-trained weights. Training for 1000 epochs yielded
satisfactory accuracy, considering the relatively small dataset. The experiment
results, depicted in Figure 8, present a confusion matrix plot of the model's de-
tections on the test set. Ladles 1 and 2 were consistently identi�ed correctly,
but accuracy decreased for other classes due to insu�cient training data. Conse-
quently, as mentioned in the previous subsection, synthetic data was generated
and the dataset was augmented. The dataset is balanced. In total, it contains
7100 image. Similar to the previous experiment, the training set used in this
experiment was 70% of the data and the test set was 30%. With a signi�cant
increase in data volume compared to the previous experiment, the number of
iterations was raised to 4000 epochs. The results are presented in Figure 20, show-
ing that almost all classes are accurately detected and identi�ed. The confusion
matrix highlights the False Negative detections in the last row. Additionally,
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an accuracy measurement was computed using a test set consisting of approxi-
mately 2200 real and synthetic images. A ladle is considered correctly detected if
at least one number on the ladle is accurately detected, even if a second number
is present but goes undetected. The proposed method achieved an accuracy of
80%, indicating that around 1760 images were correctly identi�ed by the trained
model. However, there appears to be an issue in detecting ladle 10, possibly
due to the low resolution of the number in the image. Initial experiments were
conducted using approximately 1200 annotated images, with a 70% training set
and a 30% testing set. Faster-RCNN Region-Proposal-Network with pre-trained
weights was employed and trained for 1000 epochs. Despite the relatively small
dataset, satisfactory accuracy was achieved. The experiment results, shown in
Figure [refconfusion], display a confusion matrix plot of the model's detections
on the test set. Ladles 1 and 2 were consistently identi�ed correctly, but accu-
racy decreased for other classes due to insu�cient training data. To address this,
synthetic data was generated and augmented, resulting in a balanced dataset of
approximately 7100 images. Sample detections can be seen in Figure 21. The
confusion matrix highlights the presence of False Negative detections in the last
row. Additionally, an accuracy measurement using a test set of approximately
2200 real and synthetic images yielded an 80% accuracy, indicating that around
1760 images were correctly identi�ed by the trained model. However, there ap-
pears to be an issue in detecting ladle 10, possibly due to the low resolution of
the number in the image.

4 Conclusion

The work carried out during this study has quanti�ed some information that
steelmakers knew beforehand but were proofed thanks to the thermal camera.
It was shown that, for the example given with ladle analysed in paragraph 3.3,
the slag zone su�ers greater erosion due to the chemical corrosion of the slag
and therefore o�ers greater surface temperatures. Besides that, before and after
casting di�erences were analysed and the temperature di�erence between both
images was studied, proo�ng that the ladle surface remains heating while the
casting process, as this process is long and by no means instantaneous.

In the ladle tracking it is shown that it is possible to detect and identify
the ladles in the thermal images at the steel factory using computer vision and
deep learning-based methods. The use of thermal images was employed, and
favored over RGB images in such harsh environment. Data pre-processing was
presented for reducing the unnecessary information in the image and enhancing
the important section in the thermal image. Synthetic data was presented to
balance the dataset. The underlying task was modelled as an object detection
problem. The deep learning method used was the state-of-the-art Faster RCNN
method.
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