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Abstract—In the recent decade, gender recognition and face
analysis has been one of the most researched issues in computer
vision. Although several solutions have been provided to the
problem of gender recognition from face images, nonetheless,
it is regarded as a difficult issue. Deep learning has been proven
to solve challenging problems. On the other hand, several existing
works have proven their ability to accurately predict the head
orientation angles. The remaining error in gender prediction
models requires novel solutions to try to improve it further. In
this work, we present a novel deep learning-based method to
predict gender using both the face image and the head orientation
angles. We show that the use of head orientation information
consistently boosts the accuracy of gender prediction models. We
achieve this by increasing the representational power of deep
neural networks by introducing a head orientation adapter. It
takes the head angles as input and outputs a vector that is used
to recalibrate the deep learning neural networks. The proposed
method was tested on a large-scale dataset called AutoPOSE,
which has sub-millimeter-accurate head orientation angles. We
show that using the head orientation adapter consistently boosts
the gender prediction models’ accuracy, and reduces the error
by 20%.

Index Terms—deep learning, gender prediction, face, head
orientation

I. INTRODUCTION

Gender recognition is one of the most investigated
problems in the last decade [1]. Several contributions
have been presented in constrained and unconstrained
environments, nevertheless gender recognition is still a
challenging problem. On the other hand, head orientation
estimation can now achieve high accuracy, as we shown in
[2], [3], [4]. Predicting the gender using the face image was
usually modeled as a classification problem [5], [6], [7], [8].
In [9], the authors presented a deep learning-based method
to predict the gender from the face image. In other words,
the predicted gender is a function of the face image only.
The presented models learns the gender of the subjects under
several changing conditions, like skin color, age, and head
orientation. In this paper, we investigate the effect of the head
orientation on the gender prediction models. Our aim is to
study the effect of appearance changes (due to head orientation
variation), on the gender prediction’s accuracy, and use the

head orientation to improve the accuracy of gender prediction.
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Fig. 1. Orientation Angles Space. The head orientation angles space is
divided into partitions where each partition yields feature maps modulators.
The feature maps modulators controls the flow of features through the deep
neural network model.

In the recent years, several works aimed at improving
the representational power of deep neural networks [10],
[11], [12], [13]. Chen et. al. [14] presented a spatial and
channel-wise attention network for the purpose of image
captioning. The authors showed that employing channel-wise
control over the networks feature maps outperformed the
visual attention-based image captioning. Hu et. al. [15] won
the first place in the ILSVRC 2017 competition with their
proposed novel Squeeze and Excitation network, SENet. The
authors introduced an architectural unit designed to improve
the representational power of deep learning networks. This
was achieved by performing channel-wise feature maps
recalibration. Their unit takes the output of a convolutional
block as input. The n-channels of the input feature maps
are squeezed into n-single numerical values by applying
average global pooling. The vector of numerical values is
passed through the unit. The unit’s output is a n-vector,
which is the last fully connected layer. At the end of the
module, a sigmoid function is applied, yielding weights
between 0 and 1. The excitation part is when the weights
are applied to the input feature maps, and then passed to
the next layers of the network. In 2019, Wang et. al. [16]978-1-6654-6694-3/22/$31.00 ©2022 IEEE



Head Orientation 
Estimation

Gender Estimation

Fig. 2. Overview. The figure depicts the abstract idea of the proposed method.
First, The head image is used to predict the head orientation. Afterwards, the
face image, along with the predicted head orientation angles are fed into the
gender estimation model.

introduced an effective and efficient object detection system,
that can work on different image domains, for example
human faces, CT, and satellite images. The authors were able
to achieve that by introducing a set of domain adapters to
the same deep convolutional network. The aim of the domain
adapters is to predict the specific image domain, and based
on it, dynamically recalibrate the feature maps that are most
effective in such image domain.

This paper studies the problem of gender recognition and
its relation to head orientation variations. We show that
the accuracy of gender prediction can be boosted given the
image and the head orientation angles as input. An overview
is shown in figure 2. The proposed method predicts the
gender of the subject as a function of the face image and
the corresponding head orientation angles. The image is
passed to through the deep neural model to generate image
features. The head orientation angles are employed to adapt
the network feature maps, thus boosting the accuracy in
gender prediction.

The head orientation can be modeled using the three rotation
angles (yaw, pitch, and roll). Given a three dimensional space
with axis representing the head angles. A point in the given
space represents one possible head orientation. In [9], all
images in the datasets were fed into the deep neural networks
for training and evaluation. It was learnt by the network to
properly predict the gender in any of the given face images.
In this paper, we show that the angles space can be divided
and separated in a way that supports and adapts the deep
neural network for improving the gender prediction accuracy.
Figure 1 depicts the head orientation space, and an abstract
representation of the possible subdivisions that would yield
different modulators to recalibrate the feature maps inside
the deep neural network models. Detailed explanation of the
proposed method is presented in the following sections.

II. ORIENTATION-GUIDED GENDER PREDICTION MODELS

This section introduces the orientation adapter unit, and
shows how it can be employed in the gender prediction
deep neural network models. The model proposed in [9], the
GenderCNN is modified to integrate the orientation adapter.
Besides, deeper model, the ResNet-18 is also employed for
gender prediction, and the integration of the head orientation
in the ResNet-18 is presented.

A. Orientation Adapter

The proposed head orientation unit is shown in figure 3.
The unit is a Multi Layer Perceptron, MLP. The aim of the
orientation adapter is to encode features as a function of the
orientation angles. The adapter takes the three rotation angles
(yaw, pitch, and roll) as input. The angles are connected to
three fully connected layers. The sigmoid function is applied
on the last layer to encode the features as numerical values
between 0 and 1. The unit’s output is then employed in the
gender prediction model. Two methods to use the output of
the orientation adapter are presented. The first method is a
concatenation along with the fully connected layers of the
deep gender models. Thus, the network would use the image
features encoded in the fully connected layer that is connected
to the convolution layer and the orientation features from the
adapter, to predict the gender. Another method is to use the
output of the orientation adapter as a weighting scale for some
feature maps which are generated by the convolution layers.
The unit’s output layer size must match the number of features
maps of the target convolution layer, as they will be multiplied
together.
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Fig. 3. Orientation Adapter. Orientation adapter network architecture. The
adapter takes the 3 head orientation angles as input. They are connected to 2
fully connected layers. The last layer is the output of the network. The output
is to be used in other gender prediction models.

B. GenderCNN with Orientation Adapter

In the work presented in [9], the convolutional neural
network model GenderCNN was introduced. The model was
evaluated on several public still images and videos datasets for
gender prediction. The model was efficient and achieved high
accuracy. In this work, the model is modified to be employ the
proposed orientation adapter unit. The output of the orientation
adapter is modulated with the resulting feature maps of the
convolutional layer conv2. The orientation adapter takes the
head angles as input, and generates weighting scales that are
used to control the feature maps in the convolutional part of the
model. In this work, the GenderCNN was also modified to take
1-channel images as input, since the AutoPOSE images used
are infrared images. The final predicted gender is dependent
not only on the input image, but also on the orientation angles.
Detailed evaluation of the GenderCNN and orientation-guided
GenderCNN are presented in the next section.
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Fig. 4. Orientation-Guided ResNet-18 - Concatenation. An overview of the orientation-guided ResNet-18. The face image is passed through convolution
layer and the residual blocks. The head orientation angles are fed into the orientation adapter. The orientation features are concatenated with the image
features after the global average pooling. The last layer contains the prediction of the gender.

C. ResNet-18 with Orientation Adapter

He et. al. [17] introduced the idea of residual learning in
2015, and the authors won the first place in the ImageNet
image classification challenge [18]. The authors showed the
training error increases if the networks become deeper. The
authors introduced the residual learning that elevates the
issue and the networks can become deeper while keeping
the training error high. More details about residual learning
can be found in [17]. The ResNet-18 variant was chosen as
backbone for the gender prediction problem. First, the input
face image is passed through a convolution layer with 64
filters. Afterwards, the results are passed through 4 residual
convolution blocks with different number of filters. After the
last residual block, the feature maps are passed through a
global averaging pooling layer, where each feature map is
represented by one numeric value. The average pooling layer
makes the ResNet-18 model independent of the input image
dimensions.

The proposed orientation adapter is employed with ResNet-
18 model by one of two methods, concatenation or modulation
as briefly mentioned before. Figure 4 depicts the concatenation
variant and figure 5 depicts the modulation one.

III. EVALUATION

This section presents the dataset used, along with the
training setup and evaluation results. To have a baseline for
the models performance on the gender prediction problem,
the GenderCNN models and the ResNet-18 are tested without
orientation information. Afterwards, the orientation guided-
models are evaluated and compared to the baseline results.

A. Dataset

In order to evaluate the effectiveness of the head orientation
on gender prediction accuracy, a dataset with accurate head
orientations is required. In this work, we used the AutoPOSE
dataset [3]. It groundtruth head orientation labels were
acquired using a sub-millimeter motion capturing system. An
infrared camera have been used at the dashboard location in a
car model. The optical motion capturing system was calibrated
using off-shelf commercial software from OptiTrack [19].
The intrinsic of the acquisition cameras were calibrated, and
the camera frames were calibration to the motion capturing
system using the hand-eye calibration method [20], allowing
describing the pose of the head as a rigid body in the
coordinate frame of the acquisition cameras. The orientation
of the head in 3D space is described using a rotation matrix,
which is created from 3 orthogonal axis defining the head
coordinate frame, similar to the definition in the DriveAhead
dataset [2]. The dataset contains videos of 21 subjects (8
females and 13 males). The balance in gender is important for
gender prediction. The amount of images collected was 1.1M
images from the dashboard IR camera. Moreover, all frames
of the dataset were annotated with information about driver’s
activity, face accessories (clear glasses, and sunglasses) and
face occlusion. More details about the system calibration and
the acquired data can be found in the original dataset paper
[3]. The dataset is a good candidate for the evaluation of the
proposed method as it the number of males and females are
similar and the head orientation labels are accurate.

B. Models Training

The participants in the dataset were 8 females and 13
males. The dataset is not perfectly balanced between males
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Fig. 5. Orientation-Guided ResNet-18 - Modulation. An overview of the orientation-guided ResNet-18. The face image is passed through convolution layer
and the residual blocks till ResBlock3. The head orientation angles are fed into the orientation adapter. The 256 orientation adapters are modulated with the
256 feature maps resulting from ResBlock3, and are fed into ResBlock4. The last layer contains the prediction of the gender.
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Fig. 6. Training loss for GenderCNN and ResNet-18 variants. Training
loss is depicted. ResNet-18 variants can learn faster the GenderCNN variants.
The training loss drops much quicker that GenderCNN.

and females. Using all subject might affect the learning of the
variation between the genders. Consequently 4 male subjects
were excluded from the training set. The training set consisted
of 6 female subjects and 7 male subjects. The evaluation set
consisted of 2 male and 2 female subjects. All face images
were cropped using the groundtruth face location. The CLAHE
method [21] was applied on the cropped face images. The
training optimizer used was the Stochastic Gradient Descent,
with a fixed learning rate of value 0.001 and momentum of
value 0.9. The problem of gender classification is handled as
a classification problem. Consequently, the cross entropy loss
was employed in the training setup, and it is defined as follows

LCE (p, y) = −
2∑

i=1

yi log (pi)

where p is the prediction vector and y is the groundtruth.
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Fig. 7. Training accuracy for GenderCNN and ResNet-18 variants.
Training accuracy is depicted. ResNet-18 variants converge faster than the
GenderCNN variants.

Figure 6 shows the training loss. It can be noted that the
training loss of the ResNet-18 variants drops considerably
faster than the GenderCNN models. GenderCNN without ori-
entation loss drops faster than the GenderCNN with orientation
information. This could be due to the more parameters that
are being learnt by the orientation adapter unit. Same effect is
seen in the ResNet-18 variants. Figure 7 shows the training



Model Accuracy
GenderCNN 85.5%
GenderCNN with orientation 90.7%
ResNet18 98.0%
ResNet18 with orientation (concatenation) 98.2%
ResNet18 with orientation (multiplication) 98.4%

TABLE I
EVALUATION RESULTS - ORIENTATION-GUIDED GENDER PREDICTION
MODELS. The table shows the best accuracy achieved by the models. The

results show that using the orientation information consistently improved the
overall accuracy.

set accuracy. In general, the ResNet-18 variants can reach
accuracy close to 100% much faster than the GenderCNN
variants. The GenderCNN variants require much more training
epochs to reach convergence.

C. Models Evaluation

This subsection presents the evaluation results of the trained
models on the evaluation set. The evaluation set consists of 4
subjects, two females and two males. A summary of the best
accuracy results achieved by each model is shown in table I.
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Fig. 8. Evaluation accuracy - Orientation-guided GenderCNN and
ResNet-18 models. The graph shows the models accuracy on the evaluation
set. GenderCNN: orientation-guided version boosts the accuracy by a big
margin. ResNet-18: both orientation-guided variants are better than baseline
ResNet-18. Orientation guidance boosts the accuracy on both models.

1) GenderCNN with Orientation Adapter: Starting with
the GenderCNN model, it is important to first check the
performance of the model without the orientation adapter. As
shown in figure 8, the baseline result for the GenderCNN is
on average 82% accurate. One can notice a big difference
between the best possible accuracy by the GenderCNN on
the AutoPOSE dataset and the other public datasets used in
[9]. This can be due to the difference in the data domain.
The public datasets consisted of color images with mostly
frontal images. On the other hand the AutoPOSE images are
IR images, and have a wide variation of head orientations.
However, the orientation-guided GenderCNN performs better
than the baseline variant. The best accuracy achieved by the
orientation-guided GenderCNN is 90.7%. Since the Gender-
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Fig. 9. Evaluation accuracy - Detailed ResNet-18 variants accuracy.
The graph shows smoothed accuracy results of the ResNet-18 models. The
baseline version with no orientation information achieves at most 98%.
Both orientation-guided variants perform consistently better than the baseline
version (best result is 98.38%). The error is reduced by 20%.

CNN cannot reach higher accuracy on IR images, the ResNet-
18 model was employed for further evaluations.

2) ResNet-18 with Orientation Adapter: Since the Gen-
derCNN could not achieve high accuracy results, ResNet-18
model was used as backbone for a better gender prediction net-
work. In general as shown in figure 8, all ResNet-18 variants
performed considerably better than the GenderCNN baseline
and the orientation-guided GenderCNN. The baseline result for
the ResNet-18 model could reach at most 98%. Our hypothesis
is that in case that part of the 2% error in the accuracy could be
related to the orientation variation, then the orientation adapter
shall improve the evaluation accuracy. Figure 9 shows part of
the last part of the y-axis, where the evaluation accuracy of
the baseline ResNet-18, and the two variants of orientation-
guidance, concatenation and modulation are depicted. Both
orientation-guided variants outperform the baseline ResNet-
18 model. Over the whole training and evaluation cycles,
predicting the gender using the face image and the angle
is consistently better than just using the face image. The
concatenation version is not as good as the modulation version.
Modulating the orientation adapters vector with the feature
maps of Resblock3 achieves the best result, with accuracy if
98.38%.

IV. CONCLUSION

In this paper, a novel deep learning-based orientation-guided
gender prediction method from face image was introduced. A
new orientation adapter unit was introduced to be employed
along with deep neural networks to boost the accuracy of
gender prediction. Two methods were tested for using the
orientation features, concatenation with fully connected layers
and modulation with feature maps inside the network flow.
We show that orientation guidance consistently boosts the
gender prediction accuracy on both GenderCNN and ResNet-
18 models. The proposed method was evaluated on a large
scale and accurate dataset, the AutoPOSE. We also concluded
that ResNet-18 variants can predict the gender with higher
accuracy compared to GenderCNN. By employing the orienta-



tion information in the ResNet-18 model using the orientation
adapter, the error in gender prediction was reduced by 20%.
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