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Abstract

Monocular Simultaneous Localization and Mapping
(SLAM) approaches have progressed significantly over
the last two decades. However, keypoint-based ap-
proaches only provide limited structural information
in a 3D point cloud which does not fulfil the require-
ments of applications such as Augmented Reality (AR).
SLAM systems that provide dense environment maps
are either computationally intensive or require depth
information from additional sensors. In this paper, we
use a deep neural network that estimates planar regions
from RGB input images and fuses its output iteratively
with the point cloud map of a SLAM system to cre-
ate an efficient monocular planar SLAM system. We
present qualitative results of the created maps, as well
as an evaluation of the tracking accuracy and runtime
of our approach.

1 Introduction

Visual SLAM is a fundamental computer vision
problem. Significant advances were made within the
past 5 years and many successful SLAM systems were
introduced each with its own strengths and weaknesses.
Sparse keypoint based SLAM systems are sufficient for
robotic navigation in unknown environments [11], how-
ever for AR and robotic interaction there are increased
requirements in terms of environment mapping. In
particular, AR applications can benefit from a dense
3D representation of the environment to allow inter-
action of the virtual objects with the real world and
even semantic information to dictate the type of in-
teraction with certain objects. Thus, a lot of research
effort in the SLAM domain is shifting towards this di-
rection [10].

To address this, dense mapping SLAM frameworks
have been proposed, using either additional depth sen-
sors or dense 3D reconstruction of keypoints which can
be demanding in terms of computational effort with
a real time constraint [12, 18]. The idea of using pla-
nar surfaces to represent the map is very attractive
especially for indoor scenarios since it directly creates
the ideal environment for the realistic placement of AR
content. The idea was initially explored in [14] with an
RGB-D system and in [3] for RGB.

In parallel, machine learning approaches utilizing
convolutional neural networks (CNN) have shown im-
pressive results on many computer vision problems

such as semantic recognition and segmentation. Of par-
ticular interest for the SLAM problem are approaches
that can estimate the structure of a scene from single
RGB input images (e.g. [7]).

In this paper, we explore the potential of combining
SLAM systems based on traditional projective geom-
etry with the output of CNNs. We propose a novel
fusion framework that is applied on a keypoint-based
monocular SLAM system to combine its sparse point
cloud with a CNN planar surface segmentation system
in order to create an efficient and robust dense planar
SLAM system suited for indoor AR without using any
depth sensors. In detail our contributions in this paper
are:

• An efficient dense planar SLAM framework using
only monocular RGB input images.

• A compact surfel map representation of the map
based on planarity information,

• Improved tracking accuracy through the direct
point refinement by applying planarity constraints
on keypoints.

2 Related Work

Keypoint-based SLAM systems such as ORB-SLAM
[11] create sparse point clouds from multiple views of
2D image features while direct methods such as LSD-
SLAM [5] minimize photometric error between images
but are able to map only textured areas. DTAM [12]
is a fully direct method that allows registration of a
full 3D model of its map to the input images in real
time through an efficient GPU implementation. Dense
3D mapping of the environment in SLAM is of great
importance but comes at a large computational cost
and is a challenging problem especially regarding the
reconstruction of non-textured areas.

Higher level map representation can be a solution
to this. In Slam++ [15] the map is created at object
level using previously known 3D models. In [14], a
map was represented by a set of bounded planes, using
however depth information in an RGB-D system which
simplifies the problem. Planar RGB SLAM systems
were introduced in [2, 3], combining semi-dense SLAM
mapping with 3D superpixels of low-gradient regions
achieving high quality mapping on a limited selection
of sequences without a tracking accuracy evaluation.
Similarly, [13] presents a comprehensive SLAM frame-
work with tracking based on plane correspondences



which is however not real-time capable. In contrast,
our approach aims at an efficient and accurate map-
ping of planar regions instead of a costly fully dense
reconstruction and is able to track in planar as well as
non-planar areas.

Within the recent advance of convolutional neural
network (CNN) learning methods, many approaches
that attempt to recover structural information of the
scene from single images have been proposed. Among
those, scene segmentation approaches are very popu-
lar [1] together with depth estimation approaches from
RGB images [7]. The latter ones could potentially re-
place depth sensors, however their ability to be suc-
cessfully trained across different datasets and cameras
has not yet been fully verified. Of significant interest is
the room layout estimation (i.e. segmentation of room
walls) of RoomNet [8] and the very recent planar area
segmentation of PlaneNet [9].

Even though the potential is obvious, there are
not many existing approaches attempting to improve
SLAM systems by combining them with CNN scene
estimation. In CNN SLAM [17], predicted depth im-
ages from a CNN are used to improve the mapping of
a direct monocular SLAM system. Practically, [17] is
simulating an RGB-D system to achieve an impressive
mapping quality, while in this work we are targeting
at lightweight map representation in terms of the main
planar areas which is of interest for applications such
as AR. The importance of semantic labelling and ob-
ject level segmentation in SLAM systems is addressed
in [10].

3 Proposed approach

3.1 Notation

We define a 3D point m in a coordinate system A as
mA ∈ R3. A plane Pi is defined by its equation vector
pi = (a, b, c, d) so that for every point m = (x, y, z)
on the plane the equation ax + by + cz + d = 0
holds true. A normal vector on the plane is then
ni = (a, b, c). Each plane Pi holds a set of asso-
ciated 3D points in the world coordinate system W ,
P(M,i) = {m(W,1),m(W,2), · · · ,m(W,N)}, and a set of
surfels PS,i = {s1, s2, · · · , sK}. For each surfel, its 3D
position is required, which is given as a quantized dis-
placement on the plane surface originating from a 3D
position on the plane which is common for all surfels.

The distance of a point m to a plane Pi is given by

|l(P,m)| where l(P,m) = n>m+d√
a2+b2+c2

. The projection of

the point on the plane is given by m̂ = m− l(P,m)
n

‖n‖ .

3.2 System Architecture

In Figure 1 we present the outline of SlamCraft,
our dense planar SLAM approach. The keypoint-based
ORB-SLAM [11] runs on every input image. Whenever
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Figure 1. Architecture of the proposed Planar
SLAM system

the SLAM system records a keyframe, a new thread
is created with the task of executing the modules of
our approach. We use a separate thread so that the
frame-to-frame tracking of the SLAM system is not ob-
structed. Additionally, we perform segmentation only
on every keyframe since applying our method on ev-
ery frame would not be feasible in real-time mainly
because of the processing time of the forward phase of
the neural network.

On every keyframe image, a planar segmentation
CNN [9] is applied. The output of that is a 2D seg-
mentation of the image into different planar areas and
non-planar regions. In the next step, we use the seg-
mented image to assign the 3D points of the SLAM
point-cloud map to planes (red modules in Figure 1).

These steps create plane equations and assign 3D
points to the planes, however there is still no informa-
tion about the planes boundaries that can be used for
a dense 3D mapping. This is done in the subsequent
steps (purple modules in Figure 1) that manage the
surfel map.

3.3 Plane Segmentation

A CNN is trained to output a segmentation of planes
from an RGB input image using the PlaneNet imple-
mentation [9]. We use a model that was trained on
50,000 annotated images of the Scannet dataset [4]. On
Figure 2 we show examples of the output of the network
on the images from the TUM RGB-D dataset [16]. The
network is successful at extracting the dominant planes
from the images such as the desk. For other planes
however such as the computer monitor in the first row
of images, some inconsistencies between frames can be



seen. As seen on the second row the network has some
difficulties with the objects on the desk as they are
sometimes included in the plane and other times not.
In terms of mapping the output of the network al-
though very informative cannot be used directly for 3D
mapping and that is the reason why a comprehensive
fusion scheme with the point cloud of the SLAM sys-
tem is necessary to deal with temporal inconsistencies.
PlaneNet [9] also provides plane parameters however
these were not used as their accuracy could not be ver-
ified.

Figure 2. Planar segmentation results on images
from the TUM RGB-D dataset

3.4 Plane Estimation

A map of existing planes denoted as M =
{P1,P2, · · ·PN} is created and maintained by our
the system. The map M is initialized using the first
keyframe segmentation and the 3D points that are vis-
ible on the frame together with their 2D position in
the frame. For each 3D point an area of a few pixels
(5× 5) around its 2D image position in the segmented
image is selected and if the segmentation label of all
pixels in the area is consistent then this 3D point is
added as a candidate point for a new plane. Thus, for
every plane appearing in the segmented image we ob-
tain a list of candidate 3D points. Using this list we
perform plane fitting using Singular Value Decompo-
sition (SVD) within an iterative RANSAC framework
for outlier removal aiming to find a set of points to
minimize the average distance to the estimated plain.

Existing planes have to be maintained and new
planes have to be added using newly selected
keyframes. Therefore we first try to match the key-
points observed in the frame to existing planes. If a
keypoint does not have an associated plane, we exam-
ine the distance of the point to all the planes and in case
the distance to one of the planes is below a threshold,
we add the keypoint to that plane. For all the remain-
ing keypoints, we follow the same procedure as in the
initialization, where we match labels and keypoints in
order to create plane candidates and possibly add new
planes.

It is possible that parts of a larger plane are gener-
ated completely independently as two different planes
(e.g. when a plane is visible in two keyframes with
no common keypoints). In order to deal with these
cases we evaluate every pair of planes to decide if

they should be merged. For two planes Pi,Pj to
be merged two conditions need to apply. First, the
planes should be almost parallel which holds when
|cos(θ)| = | ninj

‖ni‖‖nj‖ | = 1, where θ is the angle between

the planes. Therefore, we require |cos(θ)| < anglethr
where anglethr is set to 0.95 in our implementation. If
the planes are found parallel, the second condition ad-
dresses the distance between them which is also thresh-
olded. After merging two planes the plane equation is
re-evaluated using all its points.

It is possible that 3D points are added to a plane
but also that 3D points are erased from the map by
the SLAM system (i.e. by the culling modules of ORB-
SLAM). Therefore the plane equation is refined using
the current set of points. To achieve this we use SVD
plane fitting on the entire current set of points in the
plane. If the average distance error of points to the
newly estimated plane equation is below a threshold
then the plane equation is updated, otherwise the plane
is set as invalid and is removed from the map of planes.

The 3D points of the SLAM system are often inaccu-
rate after triangulation especially before bundle adjust-
ment is performed. However, using planarity informa-
tion from our system we can refine their 3D positions.
To do this we replace the 3D position of a point m
with its projection m̂ to its belonging plane P , given
by m̂ = m − l(P,m)

n
‖n‖ . By performing this refine-

ment on some of the point cloud points (i.e. the ones
that belong to a plane), we can correct points before
the bundle adjustment and thus increase the pose es-
timation accuracy of the tracking module. This claim
is also supported by results in the experiments Section
4.2.

3.5 Probabilistic Surfel Map

Maintaining a list of 3D points P(M,i) that belong
to a plane Pi does not give any concrete information
on the size and boundaries of the plane in 3D space by
itself. For this reason we additionally maintain a set
of surfels P(S,i) for every plane. A surfel consists of a
3D point which indicates that a square area centered
on that point belongs to the plane. In order to be able
to dynamically update and remove surfels, each surfel
si also has a probability of existence ρi.

Whenever a new plane is created, a centroid c and
two perpendicular base vectors v1,v2 parallel to the
plane are defined. First, surfels are added at the po-
sitions of the plane registered 3D points. For fast ac-
cess, the surfels are indexed with a key defined by their
displacement α, β along v1,v2 respectively so that the
surfel position is given by si = c + αv1 + βv2. This
key is created by concatenating the two (integer) com-
ponents α and β into one 64 bits key, k.

Starting from these surfels an algorithm that tra-
verses the 3D space on the plane is initiated. The al-
gorithm expands the surfels by moving incrementally
along the base vectors, projecting the new 3D position



onto the image and examining the label in the seg-
mented image in order to add a surfel. This procedure
allows mapping planes even in non-textured regions as
long as there are a few starting keypoints on the plane.
The probablity of new surfels is set to ρi = 0.7.

For already existing planes, first new surfels are cre-
ated for any newly added 3D keypoints in the plane.
Subsequently, all existing surfels 3D points are pro-
jected to the current keyframe. The label with most
appearances is set as the correct plane label. Using
this, the surfels probabilities are updated as follows:
If the surfel has the correct label in the current frame
then its probability is increased as ρ̄i = λρi + (1− λ),
otherwise it is decreased as ρ̄i = λρi. λ is a forgetting
factor that we set to 0.8 in our implementation. If the
probability of a surfel drops below 0.5, then that surfel
is deleted. The map of surfels is then expanded using
the aforementioned map traversal procedure.

4 Experimental Results

In this section we present qualitative mapping and
quantitative tracking accuracy results of our proposed
system in the TUM RGB-D [16] and ICL-NUIM [6]
datasets. No depth images from the datasets were used
in our approach and the neural network we used for
plane segmentation (Section 3.3) was not trained on
images from these datasets.

4.1 Mapping evaluation

In Figure 3 we give some exemplary screenshots of
the execution of SlamCraft on sequences from the TUM
RGB-D dataset. We show selected frames with the
current planar surfel map projected on them as well as
the map on its own. Different colours are used for each
plane. In the first and second row (sequence fr2 xyz )
the first plane that is created is the PC monitor and
shorty thereafter the desk is added to the plane map.
The plane borders are correctly defined thanks to the
probabilistic surfel map even though the network seg-
mentation output shows some instability and temporal
inconsistency (see Figure 2). This is also the reason
why some surfels of the monitor are lost in later frames.
As the camera moves the desk surface is correctly ex-
panded, even with parts of the desk that are initially
occluded by the monitor. The flatter objects on the
table, such as the keyboard are included in the plane
while some taller objects such as the headphones or the
phone are excluded. Sequence fr1 desk in rows 3,4 cov-
ers a larger area and contains faster movement. The
monitors were not registered here as planes due to the
absence of sufficient map points on them to initialize
a plane. The desk structure of the room was mapped
successfully while excluding non-planar areas.

Results from two more sequences are given in Figure
4. The first row (TUM RGB-D sequence fr3 structure
texture far), can be used for comparison to the work

of [3]. We can see that the structure in the dataset is
mapped correctly in all cases with similar quality to [3]
and at a significantly lower computational cost (≈ 250
vs. ≈ 450 ms). In the second (ICL-NUIM sequence lr
kt0 ) the two main planes (i.e. two walls of the room)
are correctly mapped by our approach.

4.2 Tracking evaluation

In Table 1 we compare the tracking accuracy of the
original ORB-SLAM to our SlamCraft. We present the
mean and median of the RMSE error out of 20 runs
of the two SLAM algorithms on 6 sequences from the
TUM RGB-D dataset. We also give the relative differ-
ence (improvement or deterioration) of SlamCraft with
respect to ORB-SLAM in %. The results verify that
the point refinement using the planar information is
of significant benefit to the tracking accuracy. For 5
out of 6 sequences SlamCraft has improved accuracy
which is often more than 10% compared to the origi-
nal ORB-SLAM. This is a welcome by-product of the
planar mapping in our system, provided mainly by the
refinement of points using planar constraints.

A runtime analysis (see Table 2) showed very similar
results to ORB-SLAM which indicates that the system
is real-time capable. All newly introduced mapping
modules have very low runtime, apart from the neu-
ral network that requires about 250ms for the forward
phase meaning that about 4 keyframes per second can
be processed. This is sufficient since as we observed
the SLAM system creates keyframes of about 10% of
the total frames.

5 Conclusion

In this paper we presented a novel approach for a
monocular RGB Planar SLAM system. The sparse
point cloud of a keypoint-based SLAM System is fused
with the output of a CNN that performs segmentation
of planar areas from single RGB images. The proposed
framework, consisting of the assignment of keypoints
to planes and coverage of planar areas using a proba-
bilistic surfel map, allows for an efficient creation of a
dense planar map of the environment which is of great
importance for applications such as AR. Furthermore,
the refinement of points using the planar constraints is
shown to significantly improve the SLAM localization
accuracy compared to ORB-SLAM. Possible further
work could include the mapping of non-planar areas
or the improvement and speed-up of the segmentation
output of the neural network.
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