
Learning 6DoF Object Poses from Synthetic Single Channel Images
Jason Rambach* Chengbiao Deng† Alain Pagani‡ Didier Stricker§

German Research Center for Artificial Intelligence, DFKI
Department Augmented Vision

Kaiserslautern, Germany

ABSTRACT

Estimation of 6DoF object poses from single images is a problem
of great interest in augmented reality and robotics research since it
enables interaction with the object or initialization of pose tracking.
Approaches utilizing deep neural networks have shown good perfor-
mance, however the majority of them rely on training on real images
of the objects which can be challenging in terms of ground truth pose
acquisition, scalability and full coverage of possible poses. In this
paper, we disregard all depth and color information and train a CNN
to directly regress 6DoF object poses using only synthetic single
channel edge enhanced images. We evaluate our approach against
the state-of-the-art using synthetic training images and show a sig-
nificant improvement on the commonly used LINEMOD benchmark
dataset.

Index Terms: Computing methodologies—Artificial
intelligence—Computer vision—Computer vision tasks; Com-
puting methodologies—Machine learning—Machine learning
approaches—Neural networks;

1 INTRODUCTION

6 Degree of Freedom (6DoF) pose estimation of arbitrary objects
from single camera images is a very important problem for robotics
and augmented reality applications that has received a lot of attention
from the scientific community recently. A precise object pose is
needed for interaction with an object and for initialization of frame-
to-frame object pose tracking.

Traditional approaches match texture features of objects and es-
timate the pose by solving a Perspective-n-Point (PnP) Problem
with the recovered to 2D-3D correspondences, often in a RANSAC
framework for outlier rejection [19]. Such approaches can only be
applied to sufficiently textured objects and are often sensitive to
illumination changes. Augmented Reality systems based on CAD
models of non-textured objects using line tracking methods often
require manual initialization, requesting the user to align the model
with the object pose which can be quite cumbersome [5].

The work of Hinterstoisser et al. [9] was focused on the detection
and pose estimation of texture-less objects in RGB-D images by
employing learning on templates created using the object model.
The released LINEMOD dataset is one of the most commonly used
benchmark datasets for object pose estimation. Brachmann et al.
[7] use uncertainty modelling of the estimated pose from RGB
images in a multistage approach with a classification-regression
forest, RANSAC pose estimation from 2D-3D correspondences
and subsequent refinement of the pose. However the approach is
computationally demanding and requires training on real images of

*e-mail:Jason.Rambach@dfki.de
†e-mail:Chengbiao.Deng@dfki.de
‡e-mail:Alain.Pagani@dfki.de
§e-mail:Didier.Stricker@dfki.de

Figure 1: We use only synthetic images to train a CNN to regress
the 6DoF pose of objects in real images

the objects thus not tackling the challenge of generalizing synthetic
image training to real images.

Deep neural network learning approaches have shown excellent
results on many computer vision problems over the last few years
especially in detection, classification and segmentation tasks [20].
However, their full potential on pose estimation problems may not
have been realized yet. A first attempt to use a Convolutional Neural
Network (CNN) for direct regression of 6DoF poses was PoseNet
[12]. The network based on the GoogLeNet [23] architecture was
used for relocalization from real images showing moderate accuracy
but was not evaluated for object pose estimation. Several approaches
followed attempting to estimate 6DoF poses of objects using a CNN
from end-to-end or as part of the estimation pipeline.

SSD-6D [10] is a CNN-based approach to the problem that uses
the SSD [15] network architecture to place bounding boxes in images
around the object and then use their size to estimate depth. In
BB8 [17] a first CNN finds the bounding boxes and a second CNN
estimates the 3D positions of the edges of the bounding box that
are then used to estimate a 6DoF pose by solving a PnP Problem.
Both approaches require an additional refinement step of the pose
which has an impact on the time required for estimation. Finally,
Tekin et al. [24] introduce a similar approach to BB8, using however
only one CNN to directly estimate the 3D positions of the object
bounding box corners. It should be noted that both BB8 [17] and
Tekin et al. [24] use real training images for their networks which
significantly simplifies the problem as the challenge of transferring
training on synthetic images to the real world is avoided. Using
synthetic images is however a much more viable option for training
considering real world applications as it does not require acquisition
of images of the real object in real conditions using a tracking
system to obtain ground truth and enables the generation of large
training datasets covering all possible object poses. To the best of our

knowledge, SSD-6D [10] is the only deep learning pose estimation
approach trained only on synthetic data. The general problem of
domain adaptation in neural networks has recently been addressed
in [6, 21] but not in the context of 6DoF object pose estimation.

In this paper, we present a CNN based approach for direct 6DoF
pose estimation of arbitrary objects using single one-channel images.
Using the pencil filter image preprocessing step initially introduced
in [18] for edge feature matching, we manage to deploy a CNN
to perform 6DoF object pose estimation while training only on
synthetic rendered images of the object 3D models without relying
on color information. We use a modified PoseNet architecture for
the first time in the object pose problem to directly regress the 6DoF
poses and introduce a novel loss function fit to the problem at hand
to facilitate the training process. In detail we propose the following
contributions in our work:

• The use of pencil images for training a CNN. Using this il-
lumination invariant representation allows for a successful
deployment of models trained only on synthetic images to
estimate poses of real life images.

• A novel loss function (ADD loss) for training a modified ver-
sion of PoseNet, inspired by an error metric commonly used
to evaluate the performance of object pose estimation.

• An overall approach that outperforms the state-of-the-art in
similar conditions (i.e. no depth images, training exclusively
on synthetic images) while also being computationally effi-
cient.

• A new dataset of textured object images taken under challeng-
ing illumination conditions is made available to the community
for experimentation.

The rest of this paper is organized as follows: In Section 2 we
give a thorough description of the tackled problem and introduce
the notation used throughout the paper. In Section 3 we give an
overview of our proposed pose estimation system and describe the
introduction of the ADD loss function for training as well as the
use of the pencil filter for bridging the gap between synthetic and
real images. Subsequently, in Section 4 we evaluate the use of the
ADD loss function and the pencil filter and provide comparisons to
the state-of-the-art on the commonly used LINEMOD benchmark
dataset. We also present a comparison to feature matching-based
estimation for textured objects on our own dataset.

2 PROBLEM FORMULATION

We address the problem of estimating the 6DoF camera pose of
arbitrary objects from single RGB or grayscale images. The esti-
mated pose consists of a rotation matrix RRRco ∈ SO(3) representing
the rotation from the object coordinate system O to the camera co-
ordinate system C and a translation vector oooc ∈ R3 representing
the position of the object coordinate system origin in the camera
coordinate system. Throughout this work we often use the equiv-
alent unit quaternion representation qqqco for the rotation RRRco with
qqqco = [qw,qx,qy,qz] and ||qqqco||= 1. We define the set of vertices of
the objects’ 3D models as V .

3 PROPOSED APPROACH

We propose the use of a CNN to directly regress 6DoF poses of ob-
jects from single monocular images. The problem is of importance
for the initialization and reinitialization of augmented reality object
tracking or in SLAM systems. We do not use depth information
since depth cameras are not widely available in commonly used
devices such as smartphones. Our focus lies mainly on the problem
of training neural networks on synthetic rendered images and de-
ploying on real life images. Synthetic training offers the advantages

that no ground truth setup for real objects needs to be constructed
and that rendered images of any object pose can be easily created.
Additionally, it is easily possible to create large datasets of rendered
images. However, transferring training on synthetic images to real
images can be very challenging especially in alternating lighting
conditions and given low-quality 3D models of the objects. Com-
monly this problem is addressed by approaches simulating different
lighting conditions during rendering. We expand on this and ad-
ditionally propose to perform both the training and the evaluation
using a normalized lighting invariant representation of the input
images, namely the pencil filter (see Section 3.3).

Our proposed pipeline consists of the following steps: We use
the 3D models of the objects to create a large dataset of synthetic
RGB images of the objects from random poses on a sphere around
the object. These images are transformed to 1-channel pencil im-
ages and used to train a CNN to regress the 6DoF poses. The CNN
architecture is a modified version of the PoseNet architecture (Sec-
tion 3.1). We consider two different loss functions for the training
(Section 3.2). The trained models can then be used for forward
prediction of poses on real input images after applying the pencil
filter transformation to them.

3.1 Neural Network Architecture

As mentioned previously we use the network architecture of PoseNet
[12] which is based on the GoogLeNet [23] architecture. GoogleNet
is a 22 layers deep network, originally designed for the task of clas-
sification and detection. This architecture was modified in its output
layers by replacing softmax classifiers with fully connected feature
vectors and 6DoF pose regressor layers to form PoseNet. We change
the original input image size from 224×224 to 448×448 in order
to learn finer features and improve the pose regression and also to
better cope with small objects at a larger distance from the camera.
We also modify the input image from 3-channel color images to sin-
gle channel pencil images. Discarding color information improves
the transfer from synthetic image training to real image deployment
and reduces the input size. The output of the network is a 6DoF pose
estimate consisting of a quaternion q̂qqco and a translation vector ôooc.

3.2 Loss Function Selection

Using an appropriate loss function is very important to train the net-
work efficiently. Originally, for PoseNet [12] the following simple
loss function LPoseNet of Euclidean distance between the estimated
pose and the ground truth pose was used:

LPoseNet = ‖ôooc−oooc‖2 + γ

∥∥∥∥qqqco−
q̂qqco
‖q̂qqco‖

∥∥∥∥
2

(1)

where oooc,qqqco, denote the ground truth position and orientation
and ôooc, q̂qqco the estimated position and orientation by the network.
There are two issues concerning the use of this loss function. First,
the computation of a Euclidean loss on quaternions is suboptimal
since the spherical constraint is disregarded. However this becomes
less of an inaccuracy for small angular distances between quater-
nions as suggested in [12]. The second issue is the use of the scaling
parameter γ used to weigh the error between the position and orien-
tation. This parameter turns out to be very important for a successful
training of the network but is highly dependant on the scale of the
position in the dataset and the overall range of poses. In a follow-up
work to PoseNet [11], the use of the reprojection error in pixels
using the estimated poses was suggested as a loss function for the
network.

For the evaluation of object pose estimation systems a commonly
used metric is the average model vertices distance introduced in [9]
and also often referred to as ADD error. We introduce the use of the
ADD also as a loss function for the training of our CNN for object

Figure 2: Examples of synthetic training images (i.e. object models rendered over real random backgrounds) in the third row and their pencil
filter version in the fourth row. Real images from the LINEMOD dataset are displayed in the first row with their equivalent pencil images on the
second row.

tracking. Similarly to Equation 1 we define this loss function as:

LADD =
1
|V | ∑

vvv∈V
‖(RRRcovvv+oooc)− (R̂RRcovvv+ ôooc)‖ (2)

We evaluate and discuss the use of both loss functions in the evalua-
tion Section 4.

3.3 Pencil Filter
The use of the pencil filter was recently introduced in [18, 19] in a
different context. Specifically, it was used as a preprocessing step
for images before performing KLT feature matching [16] for object
pose tracking. The pencil filter is an image operator that produces
a contrast image by measuring pixel difference with the maximum
value in a local neighborhood. In order to retain details in dark parts
of the image, the difference is computed in the log domain, then
converted back to the standard domain. By noting that a difference
in the log domain is equivalent to a division in the standard domain,
we can produce the pencil image by dividing the value of a pixel
by the maximum value in its neighborhood. In practice, we use
a dilation filter with an elliptical structuring element to compute
the local maximum, and divide pixel-wise the original image by
the dilation image. The generation of a single-channel pencil filter
image P from an input RGB image I is given in Algorithm 1. In the
algorithm we assume 8-bits per pixel of the images with values from
0 to 255.

Algorithm 1 Pencil Filter

1: procedure PENCIL FILTER(I)
2: G = Convert to grayscale(I)
3: P = Dilate(G, ELLIPSE)
4: for y=0 to y=G.rows - 1 do
5: for x=0 to x=G.columns - 1 do
6: if (P(y,x) == 0) then
7: P(y,x) = 255
8: else
9: P(y,x) = int(G(y,x)∗255)/P(y,x)

10: return Pencil Image P

The pencil filter was successfully applied for matching features
between rendered images of object models and images of the cor-
responding real objects. In this work, we utilise the pencil filter in
a machine learning context for the first time in order to tackle the
problem of training a deep neural network on synthetic images only
and then applying it to real images. Therefore, we train our models
on pencil images of the rendered object 3D models and evaluate on
pencil images of the real world objects.

Using the pencil representation for learning allows us to close the
gap between synthetic and real images. Thus, we do not provide any
color information in the network which can be volatile when apply-

ing across different datasets with different illumination conditions
or between synthetic and real images. Instead, we provide only edge
information in the pencil filter domain. A set of example images are
given in Figure 2 showing the similarity of synthetic and real images
after application of the pencil filter.

3.4 Network Training

The training sets consist of a number of 20,000−30,000 random
poses of the object. These poses are created by first creating a ran-
dom camera pose on the unit sphere with the object model placed
at the origin. Subsequently the camera distance to the object is
randomly set and an additional random pertrubation is added to
the camera position so that the object is not centered in the image.
For experimentation with specific datasets we constrain the training
poses to the range of the data in the dataset. We use random back-
grounds of indoor scenes taken from the PASCAL VOC dataset [8]
and the IKEA Dataset [14]. We augment our rendered training data
by adding various effects on the images. In detail, we split the train-
ing data in 6 groups and apply Gaussian noise, random contrast and
brightness adjustment, motion blur (with a 5× 5 kernel that aver-
ages in horizontal or vertical direction), speckle noise and a random
mixture of all previous effects to each of 5 groups respectively as
can be seen in Figure 3. On the 6th group, no image disturbances
are added. Subsequently, the pencil filter is applied on the synthetic
training dataset and the resulting images are then used to train the
network.

Figure 3: Examples of image effects added on synthetic training
images before application of the pencil filter. From left to right and
top to bottom the effects are: no effect, gaussian noise, contrast and
illumination changes, motion blur, speckle noise and mixture of all
effects.

4 EVALUATION

In this section we present the results of our evaluation of the pro-
posed solution for 6DoF object pose estimation. We first evaluate
the two proposed training loss functions in Section 4.2.1. Subse-
quently in Section 4.2.2, we provide an evaluation of our system on
the LINEMOD benchmark dataset where we show an improvement
towards the state-of-the-art in object pose estimation with synthetic
training. We also provide results that directly verify the benefit
of using the pencil filter instead of RGB images when training on
synthetic data. Finally, we perform a comparison to an edge feature
based approach on our newly created challenging textured object
sequences dataset in Section 4.2.3.

4.1 Implementation Details
Our neural network implementation was based on the PoseNet imple-
mentation of [1] for TensorFlow [2]. We train our models using the
ADAM optimizer [13] with a learning rate of 0.0001 and parameters
β1 = 0.9 and β2 = 0.99. The models are trained for 75−100 epochs
which requires approximately 14 hours on an Nvidia GeForce GTX
1080Ti GPU. Our network implementation is available at [4].

4.2 Evaluation Results
4.2.1 Loss function comparison
In Figure 4 we evaluate the training procedure of the network de-
pending on the choice of the loss function from Section 3.2. We
present the angular loss as well the position loss. It can be seen that
the convergence of the network is faster when using the ADD error
LADD as loss function compared to the weighted euclidean distance
loss LPoseNet . The LADD loss function however does not allow the
angular error to converge since it focuses on minimizing the position
error which appears to have a more direct influence on the loss. On
the other hand, the LPoseNet loss with a carefully selected weighting
factor γ (we set γ = 100 in our implementation) allows both the
angular error and the position error to converge smoothly. The final
verdict is that the LADD loss can be used to accelerate the network
training at an early stage, but the LPoseNet still has to be used for the
training to converge.

4.2.2 LINEMOD dataset evaluation
In Table 1 we provide an evaluation of our approach in the well
known object pose estimation benchmark dataset LINEMOD [9].
The evaluation metric used is the commonly used ADD error. The
error measures the average distance of the projected model vertices
V using the estimated object pose R̂RRco, ôooc and the real object pose
RRRco,oooc. This error is then compared to the diameter of the object and
if it is under a certain percentage of the diameter (10%,30% thresh-
olds in Table 1) then it is considered a correct pose estimate for that
object. We provide the percentage of correct pose estimations per
object using this metric. For comparison, we add the performance
of the state-of-the-art SSD-6D approach [10] as provided in [24].
We choose to compare to SSD-6D for fairness since this is the only
other approach using only synthetic data for training as opposed to
many other using real images from the LINEMOD dataset for train-
ing. Furthermore, SSD-6D uses an additional pose refinement step
after the initial pose estimation but we compare our results on the
unrefined poses in order to have a direct comparison of the estimate
that is output directly from the neural networks. The refinement step
can be applied to any approach once there is an initial pose estimate
and can also be seen as a first object frame-to-frame tracking step,
thus we will not consider it here.

The results on Table 1 show that our approach using the pencil
filter as input (OURS Pencil) clearly outperforms the one of SSD-
6D [10] on the LINEMOD dataset on all three ADD error thresholds.
Most importantly, there is a large difference in the 10% threshold
meaning that our network is capable of directly providing very
accurate poses at a much higher rate. When the threshold is increased
the gap in performance between the two approaches is decreasing,
with our approach still being superior. This can be due to some
pose outliers in our system which can be credited to the absence of
explicit training of the network to detect the object in the image. It is
also worth noting that for our approach two of the worst performing
objects were the cam and the eggbox for which the provided mesh is
of lower quality compared to the rest of the objects. This indicates
that our pose estimator is more dependant on the quality of the object
meshes and that the results could probably be improved further by
having higher quality 3D scans of the tested objects. It should
be mentioned that although our method clearly outperforms SSD-
6D [10] which also uses training on synthetic data, it still performs
worse than approaches that train on real images such as BB8 [17]

0 1 2 3 4 5
·104

0

50

100

iteration

an
gu

la
re

rr
or

(d
eg

re
es

)

LPoseNet
LADD

0 1 2 3 4 5
·104

0

20

40

60

iteration

po
si

tio
n

er
ro

r(
cm

)

LPoseNet
LADD

Figure 4: Comparison of network training with the two proposed loss functions LPoseNet , LADD

which reports 43.6% accuracy on the 10% threshold on unrefined
poses.

Threshold 10% 30%

Object [10] OURS
Pencil

OURS
RGB [10] OURS

Pencil
OURS
RGB

Ape 0 4.37 0 5.62 27.93 0.08
Benchvise 0.18 21.74 5.76 2.07 61.36 36.73

Cam 0.41 1.25 0.16 34.52 7.58 1.5
Can 1.35 2.09 0 61.43 27.78 0.33
Cat 0.51 2.54 0 36.87 24.53 1.87

Driller 2.58 12.46 12.97 56.01 49.87 54.33
Duck 0 4.78 1.83 5.56 29.05 17.63

Eggbox 8.9 1.43 0 24.61 13.57 0
Glue 0 7.38 0.49 14.18 41.92 7.05

Holepuncher 0.30 3.88 2.26 18.23 23.38 24.19
Iron 8.86 38.22 39.18 59.26 87.66 89.48

Lamp 8.20 27.35 0.32 57.64 71.66 5.95
Phone 0.18 5.39 0 35.55 30.67 3.94

Average 2.42 10.22 4.84 31.65 38.22 18.69

Table 1: Comparison of our approach to SSD-6D [10] using the
ADD metric on unrefined poses. For our approach, we report results
using one-channel pencil images as well as RGB images for training
and evaluation

We also provide results to compare our approach using the pencil
filter for training and forward estimation in our network against
using RGB images(OURS RGB in Table 1) in the same manner. The
results clearly show that the pencil filter outperforms the use of RGB
images for training on synthetic images and transferring to real ones.
On most of the tested objects the pencil filter has a significantly
higher score than the RGB images while also being computationally
more efficient due to the reduced input size (single channel image vs.
3 channels). We observed that for some objects with very distinctive
colours (e.g. the Iron) there can be a slight benefit in the use of RGB
images. However, for other objects like the Duck the RGB trained
network was often fooled by a second object of similar colour in the
image which made the output very unstable and inferior to the pencil.
For white objects (Lamp, Can) and for objects with strong edge and
contour information (Benchvise) the pencil filter performed again
better.

4.2.3 Textured object evaluation
The LINEMOD dataset consists mainly of completely textureless
objects. However,for textured objects other methods for initial
pose estimation can be used such as matching of edge features (e.g.
ORB [22]). Therefore, we also compare our learning based method
against the ORB pose initializer of [18, 19] on Table 2. The ORB

initializer uses a set of N rendered images of different object views
as references for feature matching. We perform the comparison on 4
textured objects on our own recorded sequences with ground truth
obtained from the augmented things 3D object tracker [18, 19]. This
allows us to have poses from all possible angles of the object and
even poses where the object is handheld in contrast to the marker
based ground truth of existing datasets that confine the object pose.
Additionally, the ground truth pose quality is visibly very high which
can be verified from the provided data. Furthermore, the dataset
is made challenging by lighting variations and reflections on the
objects, discrepancies between the objects and their models (e.g.
missing components, differently connected cables) and interactions
with partial occlusions of the objects. The used objects as well as
their models are presented in Figure 5. The sequences and object
models are available for download at [3].

We used again the ADD error metric for the comparison on the
same thresholds as in Table 1. For fairness, we chose a number of
N = 64 poses for the ORB Initializer since in that case the runtime
for pose estimation per image is approximately the same as our
network. In [19] a refinement step with KLT feature matching is
applied after the initial pose estimation from ORB in order to initiate
the tracking. We will compare the unrefined poses here, however
the refinement step is applicable to both the ORB Initializer and
our proposed CNN-based approach. The results on Table 2 confirm
that our approach is highly suitable for pose estimation of textured
objects under challenging conditions as it clearly outperforms the
more traditional multiple reference image ORB edge feature based
approach. There is a significant gain in the rate of highly accurate
poses (under 10% threshold) but also for a higher threshold (30%).
This indicates that the ORB initializer has a much higher rate of
complete failures in pose estimation compared to our CNN-based
system.

Threshold 10% 30%

Object [19] OURS
Pencil [19] OURS

Pencil
Dragon 12.96 15.95 25.78 71.75
Totem 0.58 0.47 4.24 15.80

Controller 5.83 6.61 13.61 49.67
Sewing Machine 2.90 29.21 24.56 80.08

Average 5.56 13.06 17.04 54.32

Table 2: Comparison of our approach to the ORB Initializer of [19]
on textured objects using the ADD metric

Finally, regarding the complexity of the proposed approach, our
network runs at ≈ 8fps on our previously described device, which is
comparable to the 10fps reported for SSD-6D [10].

Figure 5: The objects used in our new textured object dataset for
pose estimation. Images of the rendered object models on the left
column and real images of the dataset on the right column

5 CONCLUSION

We presented an end-to-end learning based approach for 6DoF ob-
ject pose estimation using only synthetic images for training. In
contrast to previous approaches, we focus more on the correct data
conditioning for training to successfully transfer our trained models
to real images. Using the pencil filter image preprocessing we shift
the learning from the more unstable color information to edge and
contour features of the objects. We applied the PoseNet CNN archi-
tecture to the object pose estimation problem and outperformed the
state-of-the-art in the LINEMOD benchmark dataset. In additional
experiments we verified the suitability of the pencil filter for the syn-
thetic to real problem against the use of RGB images. Finally, a new
challenging dataset for object pose estimation of textured objects
was introduced in order to show that our learning approach also out-
performs the more traditional texture feature matching approaches.
Possible future work includes coupling the pose estimation with an
object detection step to support multiple objects as well as using the
recovered object poses in a SLAM context.

ACKNOWLEDGMENTS

This work has been partially funded by the Federal Ministry of
Education and Research of the Federal Republic of Germany as part

of the research projects PROWILAN and BeGreifen (Grant numbers
16KIS0243K and 16SV7525K).

REFERENCES

[1] https://github.com/kentsommer/tensorflow-posenet.
[2] https://www.tensorflow.org/.
[3] https://av.dfki.de/members/rambach/.
[4] https://gitlab.com/matthewd1993/posenet.
[5] https://www.vuforia.com/.
[6] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan.

Domain separation networks. In Advances in Neural Information
Processing Systems, pp. 343–351, 2016.

[7] E. Brachmann, F. Michel, A. Krull, M. Ying Yang, S. Gumhold, et al.
Uncertainty-driven 6d pose estimation of objects and scenes from a
single rgb image. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3364–3372, 2016.

[8] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man. The pascal visual object classes (voc) challenge. International
journal of computer vision, 88(2):303–338, 2010.

[9] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab. Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In Asian conference
on computer vision (ACCV), pp. 548–562. Springer, 2012.

[10] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. SSD-6D:
Making RGB-based 3D detection and 6D pose estimation great again.
In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1521–1529, 2017.

[11] A. Kendall and R. Cipolla. Geometric loss functions for camera pose
regression with deep learning. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), vol. 3, p. 8, 2017.

[12] A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of
the IEEE international conference on computer vision (CVPR), pp.
2938–2946, 2015.

[13] D. Kingma and J. L. Ba. Adam: A Method for Stochastic Optimization.
2015.

[14] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA Objects: Fine
Pose Estimation. ICCV, 2013.

[15] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. Berg. Ssd: Single shot multibox detector. In European conference
on computer vision, pp. 21–37. Springer, 2016.

[16] B. D. Lucas, T. Kanade, et al. An iterative image registration technique
with an application to stereo vision. 1981.

[17] M. Rad and V. Lepetit. BB8: A Scalable, Accurate, Robust to Partial
Occlusion Method for Predicting the 3D Poses of Challenging Objects
without Using Depth. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[18] J. Rambach, A. Pagani, M. Schneider, O. Artemenko, and D. Stricker.
6DoF Object Tracking based on 3D Scans for Augmented Reality
Remote Live Support. Computers, 7(1):6, 2018.

[19] J. Rambach, A. Pagani, and D. Stricker. [POSTER] Augmented Things:
Enhancing AR Applications leveraging the Internet of Things and Uni-
versal 3D Object Tracking. In 2017 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR-Adjunct), pp. 103–108. IEEE,
2017.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
779–788, 2016.

[21] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for
deep domain adaptation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient
alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE
international conference on, pp. 2564–2571. IEEE, 2011.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, et al. Going deeper with convolu-
tions.

[24] B. Tekin, S. Sinha, and P. Fua. Real-Time Seamless Single Shot 6D
Object Pose Prediction. arXiv preprint arXiv:1711.08848, 2017.

	Introduction
	Problem Formulation
	Proposed Approach
	Neural Network Architecture
	Loss Function Selection
	Pencil Filter
	Network Training

	Evaluation
	Implementation Details
	Evaluation Results
	Loss function comparison
	LINEMOD dataset evaluation
	Textured object evaluation

	Conclusion

