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ABSTRACT

Recognizing previously observed actions in video sequences can
lead to Augmented Reality manuals that (1) automatically follow
the progress of the user and (2) can be created from video examples
of the workflow. Modeling is challenging, as the environment is
susceptible to change drastically due to user interaction and camera
motion may not provide sufficient translation to robustly estimate
geometry.

We propose a piecewise homographic transform that projects the
given video material onto a series of distinct planar subsets of the
scene. These subsets are selected by segmenting the largest image
region that is consistent with a homographic model and contains a
given region of interest. We are then able to model the state of the
environment and user actions using simple 2D region descriptors.
The model elegantly handles estimation errors due to incomplete
observation and is robust towards occlusions, e.g., due to the user’s
hands. We demonstrate the effectiveness of our approach quantita-
tively and compare it to the current state of the art. Further, we show
how we apply the approach to visualize automatically assessed cor-
rectness criteria during run-time.

1 INTRODUCTION

Workflow knowledge comprises both explicit, verbalizable knowl-
edge and implicit knowledge, which is acquired through practice.
While the first type can be well presented in the form of traditional
paper documentation, the second requires or at least benefits from
training with a permanent corrective. Current approaches to Aug-
mented Reality (AR) manuals have mostly concentrated on making
the transfer of the first type more efficient (e.g., [1, 23, 6]). This has
resulted in systems that allow the user to display instructions for a
certain work step until the user requests the next instruction manu-
ally. The didactive gain of these systems is principally unchanged
in comparison to paper manuals with the difference of omitting the
cognitive load needed to associate a textural explanation or an in-
structive sketch with the current work environment.

Being able to track the manual workflow itself allows improving
on two fronts: Firstly, to make the running system follow the user
automatically while performing the task. Secondly, exploiting the
fact that we deal with an interactive system by also conveying feed-
back over the quality or (whenever possible) the correctness of the
task execution. Figure 1 shows examples of this visual feedback.

As [18] has shown recently, it is possible to automatically create
interactive Augmented Reality manuals from video examples of a
reference performance. The approach mainly focused on unsuper-
vised temporal segmentation of the workflow video recording with
a fixed camera.
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Figure 1: Example application showing an automatically authored
AR-manual. The half-transparent overlays (left column) were auto-
matically extracted from the reference sequence. The green coloring
indicates that the current step is conducted correctly, red indicates a
wrong posture or position

In this work, we extend the approach to extract the required in-
formation from a moving, for example head-worn camera. This
allows the ad-hoc, in-situ documentation of workflows during the
execution. The topic is getting particularly relevant (as reflected
in [9]) with the advent of less obstructive, consumer-targeted first-
person vision cameras in combination with AR displays like the
Vuzix M100 and most prominently Google Glass.
Contributions: We propose a robust, piecewise homographic
transform that we call Relevance Plane Transform (RPT) that
projects the given video material onto a series of distinct planar
subsets of the scene. These subsets are selected by segmenting the
largest planar image region that contains a given region of inter-
est. As we aim for manual workflows, we select the planar sub-
set that contains the region of most user interaction, derived from
the temporal task structure and the viewing direction. The result
is a piecewise two-dimensional spatiotemporal model of dynamic,
changing environments. We use this to sample 2D probability maps
of the hand location and to sample instructive snippets as described
in [18] from a moving camera. It does not require knowledge (or
consistency) of 3D scene geometry, explicitly copes with dynamic,
changing environments, and works with uncalibrated cameras.

In addition to this main contribution, we present a method to au-
tomatically assess certain correctness indicators and propose means
of visualizing them to the user during the workflow. The resulting
system allows the fully automatic creation of Augmented Reality
manuals from video examples as well as their context-driven pre-
sentation in AR. In contrast to the current state of the art in this
area, our system is able to automatically follow the progress of the
user, particularly without using markers or any other tracking aid.
Due to the visual feedback that is provided while following the pro-
cedural instructions, it can be used as an interactive tutoring system
that also conveys feedback over the assessed correctness of the ex-
ecution.
Paper structure: We start with a review of the problem properties.
We will then review related work followed by a detailed explana-



tion of our main contribution, the Relevance Plane Transform (Sec-
tion 3). After that, we show how we sample and apply the location
probability maps (Section 4.1). Details regarding the visual feed-
back as well as a brief overview of the entire system is provided in
Section 5 We evaluate the tracking performance in comparison to
the approach presented in [18] and conclude our work in Section 7.

1.1 Problem properties
Analyzing video material to automatically create AR manuals leads
to some quite unique and specific constraints. We briefly summa-
rize the key aspects to motivate our tracking design decisions.
Camera motion and viewpoint: Video material is typically
recorded from a head-worn camera leading to ego-perspective
recordings. Camera motion during a certain manual work step will
dominantly consist of orientation change and we cannot assume
sufficient camera translation to reliably reconstruct geometry.
Environment: Additionally, the environment is susceptible to
change due to user interaction, which affects scene geometry and
trackable features.
User: When using the resulting AR manual, we can assume a coop-
erative user that supports the system when given appropriate feed-
back. However, this assumption does not necessarily hold for the
training material.

2 RELATED WORK

There has been extensive work on the general use case of procedu-
ral assistance using Augmented Reality. The early work of Caudell
and Mizell [3] promoted this use case for head-up displays, thereby
coining the term Augmented Reality. Since then, according sys-
tems were presented based on fiducials [20] or CAD models [19]
and evaluated for various application domains like automotive [14],
military [6], object assembly [24], and manufacturing [16].

Recently, the authors of [7] have evaluated AR in the psychomo-
tor phase of a workflow, the phase wherein the user actually ex-
ecutes each work step. They use markers, attached to all tracked
objects and on the head-worn display. On moving one of the in-
corporated objects, indicating the beginning of the psychomotor
phase [15], their system presents new overlays (dynamic arrows,
highlights, or labels) to assist the user during the execution. While
we share the distinction between an informational phase and the
psychomotor phase, we focus on the technical realization of mark-
erless spatiotemporal tracking. Additionally, the general scope of
our work is to automate the creation process of systems for procedu-
ral assistance. For details on the authoring aspects of our approach,
please refer [18].

The authors of [25] evaluate a comprehensive AR-based train-
ing system and discuss various aspects of skill transfer, AR-based
training, and tele-consultation. In addition to adaptive visual aids
that are adjustable with respect to their guidance level, they also ap-
ply additional haptic feedback using a vibrotactile bracelet. Their
approach builds on pre-authored multimedia content, which is ad-
ditionally complemented and extended by a remote expert, whereas
we propose to extract this type of information from video examples
showing a reference performance.

One major challenge when gathering information from an un-
constrained, dynamically changing environment is to define a data
structure that can hold and describe the findings. One straight-
forward approach would be to anchor information at 3D locations,
i.e., to annotate the scene’s 3D geometry (or an online reconstruc-
tion of it). Examples for this method are all marker based ap-
proaches [11], 3D model-based approaches [26], or SLAM-related
approaches [10]. As discussed in section 1.1 this is not feasible in
our scenario.

Another popular method is to associate information with 2D
image features. In this case, information is anchored with point-
features [21, 2], region descriptors [8] or object detectors [27] that

principally can operate separately on single frames of the sequence.
While this is often sufficient and feasible, it has one major disad-
vantage as it does not allow a spatially continuous annotation of the
scene.

We propose to anchor information within a dynamic scene using
a temporal series of spatially continuous 2D representation. These
2D maps are registered with the scene trough a planar structure that
contains a certain region of interest. In contrast to methods like
[4, 12], we do not aim for an accurate reconstruction of the envi-
ronment or the camera pose which relaxes most of the constraints
on scene geometry. Particularly, our model does not imply any re-
quirements on camera motion, like it is necessary for structure from
motion (SfM) and SLAM-based methods.

The authors of [5] have recently proposed a tracking and map-
ping scheme that deals with the motion requirements through ex-
plicit model switching. In contrast, our approach is based on prior
temporal segmentation that leads to distinct or only loosely coupled
local 2D maps always using a homographic model. The temporal
segmentation is derived from task structure analysis of the refer-
ence sequence [18] with the extension that strong violations of the
homographic model can additionally lead to a new segment.

3 RELEVANCE PLANE TRANSFORM

The core idea is to identify the planar image structure (the so-called
Relevance Plane RP) that contains a certain region of interest. All
images that share the same region of interest (ROI) are then pro-
jected into a common 2D coordinate frame using homographies ac-
quired from tracking the planar structure. The corresponding ROIs
are selected according to the temporal task structure, estimating lo-
cations of user interaction. We assume that the user touches the en-
vironment in the course of each work step. Therefore, the contact
points will always sharply project into the common frame. Con-
tent at different depths will show a reprojection error proportional
to the distance to the RP unless camera motion is purely rotational.
Figure 2 illustrates the model and this consideration.
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Δh 

Figure 2: Illustration of the model assumption: The RPT provide ac-
curate estimates if ∆h and l are small compared to d

The camera motion during a single work step exhibits only little
translational motion, as pointed out in Section 1.1, which leads to
only small reprojection errors outside of the RP. The reason why
simple image stabilization is not sufficient is that between different
users, however, the translational offset might be significant. While
our approach is equal to whole image stabilization in case of purely
rotational motion, with translational motion, the tracking support
converges to the planar structure. By exploiting the fact that with
degenerate (i.e., purely rotational) motion, the entire image sharply
projects into the common frame, we can sample without actually
estimating the Relevance Plane. The segmentation can still take
place during online tracking.

In the following sections, we explain how we track the camera
(Section 3.1). After that we show how the various ROIs are selected
(Section 3.2). and how we robustly segment the largest support
region (Section 3.3) to track the Relevance Plane (Section 3.4).



3.1 Camera tracking

We use a very simple but practical alignment scheme to track the
camera.
Step 1: We start by selecting arbitrary corner features Pt within
frame t = 0. After locating the correspondences within the next
frame using KLT [22], we use RANSAC to find the largest sub-
set of correspondences whose movement can be described using a
homography, i.e., we determine the largest set of correspondences
Pt+1 and the homography Ht+1

t that satisfies

‖~pt+1−Ht+1
t ~pt‖2 ≤ ε, ~pt ∈Pt , ~pt+1 ∈Pt+1 (1)

where ε is an error threshold. The impact of a suboptimal RANSAC
solution is negligible as (1) the method gracefully deteriorates with
suboptimal results and (2) the step gets repeated on every frame.
Though, it is important not to set ε too low, since it affects how the
tracking support is enlarged in case of occlusions. We found values
between 4 and 6 pixels to produce good results w.r.t. an image size
of 960×720 pixels.
Step 2: For the next frame t = 1, we repeat KLT and RANSAC
with the already determined set of points Pt+1 to estimate Ht+1

t for
t = 2. After that, we select new corner features across the entire
image in frame t, find correspondences in t+1 and directly apply
(1) to reject points that do not comply with the homographic model.
We continue to track by repeating Step 2 for all subsequent frames
t = 3..n. In case of a complete loss of tracking, i.e., Pt = /0, we
repeat Step 1.

This simple scheme only provides camera location w.r.t. a ran-
dom subset of the image and tends to drift quickly (which is neg-
ligible in our framework since we segment the sequence into sev-
eral independent and rather short segments). Nevertheless, it has
some useful properties that we will later use to segment the Rel-
evance Plane: Firstly, it operates consistently on translational and
rotational-only camera motion. SLAM-related methods mostly re-
quire a certain initialization and movement pattern (e.g., [10]) or use
explicit model switching to cope with degenerate motion (e.g., [5]).
Our method gradually converges to a planar subset with according
motion, which is very important for our segmentation scheme. Sec-
ondly, in case of strong occlusions or change of environment, this
scheme gradually deviates from the coplanar point set (steered by
the value of ε). Camera tracking continues despite a fully occluded
target, although of course with a higher tracking error.

3.2 Determining the set of Relevance Planes

We switch the ROI and therefore the Relevance Plane on every task
of the workflow. To that end we adopt the segmentation criteria
from [18] and extend it by additionally using strong camera move-
ment as a cue for a changed region of interest. The top rows of
Figure 8 and 9 show the segmentation result.

3.2.1 Temporal task structure

For the sake of completeness, we provide a brief summary of the
original segmentation process. For details, please refer to the origi-
nal publication [18].

The approach uses whole-image distance functions of the sort
d(I1,I2)→ R where I1 and I2 are two arbitrary images of an or-
dered image sequence. In order to cope with lighting changes and
small perspective deformations, d(l1, l2) is implemented using the
DOT region descriptor [8]. To further minimize cross speaking due
to small camera movements, the function is explicitly made invari-
ant to small affine image transforms. The main premise is the fol-
lowing: While it is not decidable whether dissimilar images were
produced by the same or different actions, it is relatively safe to
assume that very similar pairs were produced by the same action.

Formally, this is introduced as a distance threshold T and only
appreciating violations d(I1,I2)> T , a so-called novelty. The seg-
mentation is then based on minimizing the shortest-path, i.e., find-
ing a set of frames with the least amount of novelties that connects
between the first and the current frame of the sequence. For exam-
ple, a scene with little visual change will produce a small shortest
path as well as a scene with a very high but repetitive change. As
soon as the visual change increases or alters in movement pattern,
this will result in a strong lengthening of the shortest path and thus,
a segment boundary. After determining the segment boundary, the
length of the shortest path in relation to its theoretical maximum is
used to distinguish segments with user actions from static segments.

3.2.2 Strong camera movement
For the application at hand, this adopted segmentation strategy is
extended with segmenting on strong camera movement. Since we
want to distinguish different types of movement and weight them
differently, we derive three measures for different components of
a homography H. For in-plane translation, we simply measure the
translational shift of the image center:

τ(H) = d
(
(cx,cy,1)T ,H(cx,cy,1)T

)
(2)

where d(~h1,~h2) is the Euclidean distance of the points after ”un-
homogenizing”, and cx,cy are the pixel coordinates of the image
center (or the optical center, if available).

For assessing out-of plane rotation, we score the perspective dis-
tortion of the image center:

φ(H) =
maxi=1..4 di

mini=1..4 di
(3)

with d1..4 being the lengths of the 4 edges of a distorted square:

d1 = d(H(cx−1,cy−1,1)T ,H(cx+1,cy−1,1)T )

d2 = d(H(cx+1,cy−1,1)T ,H(cx+1,cy+1,1)T )

d3 = d(H(cx+1,cy+1,1)T ,H(cx−1,cy+1,1)T )

d4 = d(H(cx−1,cy+1,1)T ,H(cx−1,cy−1,1)T )

Finally, movement along the optical axis is scored as

σ(H) = log2 d1 +d2 +d3 +d4

8
(4)

Since we deal with a head-worn camera, we want to ignore short,
likely unintentional movements. To that end, we filter values within
a sliding window of length w, only appreciating the minimum mo-
tion value. We segment the sequence if one of these measures
exceeds a certain threshold throughout the entire sliding window,
i.e., if min

k=t−w..t
τ(H−1

t−wHk) > Tτ , analogous for φ ,σ . The camera

movement thresholds Tτ ,Tφ and Tσ are hereby determined experi-
mentally. Since rotations around the optical axis do have a negligi-
ble effect, we are entirely ignoring this kind of movement.

Movement along the camera axis often occurs because the user
performs work that deals with details or requires a high accuracy.
Due to this, we grant a high threshold Tσ as segmentation condi-
tion, although it has a strong impact on perspective distortion and
sampling precision of the respective maps.

3.2.3 Selecting the region of interest
We exploit the task structure to determine the region of most user
interaction. We start with temporal segments Si that have been
classified as containing user actions. We represent the viewing di-
rection of each image It ∈ Si using an attention mask Mt that is
1 in the image center and radially fades out to 0. After aligning



these masks using the homography Ĥt = ( 1
|Si| ∑k Hk+1

k )−1Ht+1
t we

determine the region of interest of Si as

ROIi = thresκ

(
∑warpĤt

(Mt)
)

(5)

where warpĤt
warps the image using the homography Ĥt and thresκ

is a binary image threshold operator with threshold value κ . We
reuse the same ROI within the directly adjacent static or movement
segments. In case of two neighboring action segments the subse-
quent one propagates the ROI.

We also tried to define the ROI as the area of greatest optical
flow, around the centroid of the hand silhouette, at the location of
the fingers estimated through [17], and through combinations of the
three but found that this approach worked most reliably in practice.

3.3 Segmenting the Relevance Plane

Figure 3: Support region while tracking the Relevance Plane

Segmenting the RP is quite analogous to our camera tracking
scheme described in Section 3.1 with simple adjustments:
Altered Step 1: The corner selection is constrained to a support
region initialized with the region of interest.
Altered Step 2: The support region is being updated by threshold-
ing the density map of the currently tracked features before reject-
ing points that do not comply with Ht+1

t . Figure 3 illustrates how
the support region is propagated.

Without occlusions and with sufficient camera motion, the sup-
port will converge to a planar subset of the scene that strongly over-
laps the region of interest. In presence of occlusions, the support
drifts to a planar subset that satisfies (1). Note that due to the radial
distortions of an uncalibrated camera, the support will not span the
entire planar structure.

The homography to transform an image It into the common co-
ordinate frame is given by:

ĤRP
t = (

1
|Si|∑k

Hk+1
k )−1Ht+1

t (6)

where |Si| is the number of images in the segment. This type of
interpolation of the homographies is along the circular secant, not
the arc; therefore it degenerates in case of strong rotation. How-
ever, since we also separate common frames according to move-
ment cues, this type of interpolation becomes feasible within this
application.

3.4 Matching and Tracking
For initialization, we begin with the region matching approach as
proposed by [18] to get a rough four degrees of freedom (4-DOF)
quantized pose estimate (scale, rotation, x- and y-translation). Con-
tinuing from this pose estimate, we use a point matcher to refine
it into a 6-DOF pose estimate. Although this way of recovering
the pose estimate is considerably slower than using just the point
matching approach, it is highly robust towards lack of texture or
occlusions.
Build point descriptors: We compute ORB [21] keypoints and
descriptors within the Relevance Plane support for each image pro-
jected into its common frame. Thereafter, we merge all points that

are close in image and descriptor space through replacing them by
the averaged keypoint position and the descriptor with the lowest
distance sum towards all others within the merge set.
Matching: We start executing DOT matching which returns a
rough (quantized) 4-DOF pose, denoted as H4. Additionally, we
calculate a 6-DOF H6 pose by detecting and matching point fea-
tures within the segment’s RP support projected into the image us-
ing H−1

4 .
We reject the point matching homography H6 if it does not com-

ply with H4 by examining the values of τ(H−1
4 H6),φ(H−1

4 H6), and
σ(H−1

4 H6). In case of sufficiently low values, we initialize the
tracking using Ht=0 = H6. Otherwise, we use Ht=0 = H4 but repeat
the matching procedure with one of the following camera frames.
In case of successful initialization, the homography Ht=0 is written
forward using Ht+1

t from Section 3.1 while maintaining the support
region of the Relevance Plane which results in the homography:

H̄RP
t = ∏

k=0..t
(Hk+1

k )Ht=0 (7)

Since KLT is also not dependent on point features (only on suffi-
cient rank 2 image gradients within each patch), the method also
works with severely occluded or mostly textureless environments.

4 WORKFLOW TRACKING

In the two following subsections, we explain how we capture and
store hand locations and how this is combined in an extended scor-
ing function.

4.1 2D location maps

Figure 4: Images projected into common frame and averaged (left),
hand location map (middle), hand location map projected into the
field of view (right)

We store the location probability of the user’s hands in a 2D
map for each temporal segment separately. We first segment the
hand silhouette mask St based on skin color segmentation for ev-
ery image It ∈ Si . While simple pixel-wise segmentation based
on HSV histograms is sufficient for the evaluated scenarios, a more
robust substitute for this step is the segmentation procedure from
[13]. The location probability map is then the normalized average
SRP

i = 1
|Si| ∑warpH̄RP

t
St , where |Si| is the number of images in seg-

ment i. Figure 4 illustrates this procedure.



We also use this to provide visual feedback by color-coding this
map and projecting it into the field of view of the user, compare
right column of Figure 4. A very low or zero location probability is
indicated as red, low as yellow, and high probability as green. Com-
pare Section 5 for a discussion of this feedback from an application
perspective.

4.2 Tracking score
In [18], an image received a classification score for each candidate
segment using a k-NN classifier using the robust distance function,
reviewed in Section 3.2.1:

scorei
NN(It) =

1
k ∑

l=1..k
1/d(It ,NN(l)) (8)

where NN(l) denotes the lth nearest neighbor. Using the location
maps, we extend the scoring function to

scorei(It) = α scorei
NN(It)

−β count(thresκ (SRP
i )⊗warpH̄RP

t
(St)) (9)

where α and β are weights and count() is the non-zero pixel count
and ⊗ denotes the pixel-wise XOR operator.

One important aspect to note is that we do not apply scorei
NN(It)

within the normalized frame but in the original image space. This
is due to two reasons: (1) Since scorei

NN(It) implicitly has some
affine invariance and robustness towards arbitrary local deforma-
tion, it also handles a certain degree of perspective distortion. (2)
The term also appears in tracking (re-)initialization to determine
H4. To allow an instantaneous reinitialization, we chose to apply it
to the image space directly. Otherwise, in case of a tracking loss,
the user is required to adopt a valid initialization position. In our
framework, we use an attention funnel to guide the user back, if he
wanders off too far.

5 APPLICATION

Although the paper is mainly focused on the technical aspects of
spatiotemporal tracking, we have also made two contributions to the
general use case of AR-based procedural assistance. In this section,
we discuss these more application-centric aspects of the approach.

The contribution in this respect is the automatic assessment of
correctness indicators and their presentation to the user in the form
of visual real-time feedback: Enactive feedback, during the psy-
chomotor phase, for which we propose a novel kind of visual rep-
resentation and optical validation that compares the outcome of a
work step with a desired target state.

Figure 5 shows examples of the four kinds of visual overlays that
are used for guidance, including the procedural and annotational
overlays that have already been presented in our previous publi-
cation [18]. We will now briefly explain the two new correctness
indicators and their technical realization.
Enactive feedback Through back projecting the color-coded lo-
cation probability maps, described in Section 4.1 into the field of
view, we are able to provide real-time feedback about whether the
user’s hands are at locations that comply with the reference mate-
rial. A very low or zero location probability is indicated as red, low
as yellow, and high probability as green. These colored maps are
then projected into the current camera frame using the inverse Rel-
evance Plane Transform and then used to tint the largest connected
skin-colored regions, see Figure 5(a) and 4.

In addition to indicating clearly incorrect hand positions, it is
also reassuring the user of the fine-grained support through the sys-
tem. The enactive feedback hereby replaces the procedural overlays
during the psychomotor phase to reduce visual clutter of the inter-
face.

(a) Enactive feedback (b) Optical validation

(c) Procedural overlays (d) Annotational overlays

Figure 5: Visual feedback provided by the system

Optical validation Through comparing the reference sequence be-
fore and after a segmented user action, we are able to automatically
identify image regions that have been altered in the course of the
action. During run-time, we then perform an optical validation of
the observed state after the user has finished the work step. Depend-
ing on the outcome, we either acknowledge a correct (green check
mark) or indicate an incorrect (red ’x’) completion, see Figure 5(b).

In contrast to [18], where changed regions could only be deter-
mined for recordings from a fixed camera, we can now also handle
a moving camera. This is achieved by registering the Relevance
Planes for the preceding and subsequent static segments using the
approach described in Section 3.4 prior to the comparison. We then
extract the corresponding image patches from the static segments
before (prior state) and after (target state) the actual action takes
place. During run-time, we compare the target state patch with
the tracked camera image when the user is assumed to have com-
pleted the respective work step using normalized cross-correlation.
Hereby, we tolerate small translational (+6, 0, −6 pixels in x &
y direction), rotational (+5◦, 0◦, −5◦), and scaling (90%, 100%,
111%) deviation using brute-force matching of the resulting 81 po-
sitions and orientations. It is not straight-forward to determine a
threshold value for a successful match, as we do not know, whether
a low score comes from an incorrect execution by the user or gen-
eral image distortion effects due to changed lighting or viewpoint.
We therefore use the known prior state to determine a suitable
threshold. We match the prior state patch using the same proce-
dure to the live camera image just before the execution of the work
step. Since we know that the matching score accounts for a positive
match, we use this as the matching threshold.

The spatiotemporal tracking is reliably identifying when the user
has reached a potential target state. Though, it is generally not able
to discriminate between the possibly small appearance discrepan-
cies that indicate errors. The pixel-wise comparison of the identi-
fied image regions is far more specific in this respect.

Figure 6(a) shows a schematic overview of the application during
run-time, including how the model for optical validation is incor-
porated. Figure 6(a) shows an analogous overview of the authoring
process, marking the extensions covered in this paper.

6 EVALUATION

We have evaluated the applicability of the tracking approach in two
industrial workflows that were recorded with a head-worn cam-
era and a notebook-maintenance scenario that was recorded with a
fixed camera. Our three datasets differ fundamentally in their prop-
erties: For baseline, we included the notebook sequence from [18]
(Figure 7). Due to the fixed camera, this is a direct evaluation of
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Figure 6: Schematic data flow diagrams for the tracking and the authoring process
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Figure 7: ”Notebook” : Temporal segmentation of reference and test sequence showing action segments and yellow-tinted static segments and
(top). Descriptor score margins and correctness (bottom)

the impact of the location descriptor described in 4.1 and we there-
fore omitted the (trivial) common frames in the figure. The ”Plugs
& circuit board” (Figure 8) exhibits many large planes, coarsely
aligned with the image plane and relatively steady camera motion.
”Lever & lid” (Figure 9), which was also used in [18] exhibits few
trackable planes, the angle between the Relevance Planes and the
image plane is quite large, and it comprises erratic camera motion.

To analyze the tracking performance, we recorded each scenario
twice and used the first for reference and the second for testing.
To generate ground-truth, the second recording was manually seg-
mented to exactly match the temporal segmentation of the reference
sequence. We then tracked each sequence once with the approach
described in [18] and once with our proposed extension. Since
maximum vote is used as decision rule in both cases, we were in-
terested in the percentage of correctly classified frames according
to this rule and the ”confidence” of this decision. Therefore, we
measured the score margin of frame t, i.e., the score of the correct
(according to ground-truth) segment classifier minus the highest ad-
jacent segment classifier: mi(t) = scorei−max(scoret+1,scoret−1).
The number of correct classifications is then given through counting
mi(t)> 0. The results are shown in Figure 7, 8, and 9. Additionally,
Table 1 lists overall performance numbers.

The ”Notebook” sequence only slightly improves with the pro-
posed approach. While there are large improvements in certain
segments (segments 1, 4, 9, and 15, compare Figure 7), these are

evened out by the unchanged or even slightly decreased correctness
percentage of the other segment classifiers. The decision margin,
though, almost doubles from 12 to 22, which is an indicator for the
increased robustness.

The tracking performance for the sequence ”Plugs & circuit
board” increases drastically from 30% to 74% overall correctly
classified frames. The score margin was likewise improved from
the negative margin −21 to 15.8 and these increases are spread
among almost all segment scores, compare Figure 8.

On the other side, the ”Lever & lid” dataset only marginally
benefits from the approach. This is mostly due to the already high
tracking score of 76.5%. One interesting aspect is that the accord-
ing score margin is quite small in both methods: 0.2 and 0.29,
respectively. This is owed to the employed dominant orientation
templates in combination with highly cluttered background. As the
region descriptor only stores the orientations of the k strongest gra-
dients within the descriptor support, much of the cluttered back-
ground gets encoded. This leads to the decreased match score mar-
gin, as differences in the foreground have less impact.

Additionally, we evaluated the reprojection accuracy in the two
datasets recorded with a moving camera. To that end, we first com-
puted the RPT for each segment as described in Section 3.3. Then,
we masked the desired region of interest within each common frame
as ground truth. This ground-truth annotation is illustrated as the
blue grids in Figure 8 and Figure 9, respectively. For every im-
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Figure 8: ”Plugs & Circuit board” : Temporal segmentation of reference and test sequence showing yellow-tinted static-, blue-tinted movement-,
and action-segments (top). Descriptor score margins and correctness (middle). Common frames for selected temporal segments (bottom)

age It ∈ Si projected into the common frame, we selected points
~pt within the ground-truth mask and tracked them using KLT to get
the entire point trajectory ~pt for every t in the segment. The repro-
jection error one point ~pt is then taken as: e(~pt) = ~pt− 1

|S| ∑~pt and
the overall reprojection error is determined as the average of e(~pt)
over all selected points and all segments. The results are shown in
Figure 10.

The reprojection error is lower for the easier data set ”Plugs &
circuit board”. Over 60% of the pixels reproject into an area of
2 pixels diameter compared to only 30% in the ”Lever & lid”. In
both sets, the tracking error in pixels does not exceed 20, measured
w.r.t. to an image of 960×720 pixels. For example videos, please
refer to the supplementary material.
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Figure 10: Reprojection error in pixel (image size is 960x720)

7 CONCLUSION

We have presented a method to model user interaction and accor-
dant change of the environment by temporally segmenting user ac-
tions storing descriptors in a series of 2D maps. We have shown

Table 1: Tracking performance comparison

Petersen2012 Proposed
Data set Margin Correct Margin Correct

Notebook 12.2 62.8% 21.6 68.0%
Lever & Lid 0.2 76.5% 0.29 80.5%

Plugs & Circuit Board -21 30.4% 15.8 74.5%

and evaluated examples how this can be used in the application of
workflow tracking for Augmented Reality manuals that are auto-
matically created from a single first-person view video example.

The higher precision of our tracking approach improves the gen-
eral experience in terms of higher accuracy of the visual overlays
as well as substantially reduced the spatial jitter compared to the
approach, described in [18].

In future work, we plan to study effectiveness of the proposed
visual feedback during the psychomotor phase with a focus on skill
transfer. In this context, we will also concentrate on using hand and
finger tracking to further improve the feedback that is given to the
user.
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Figure 9: ”Lever & Lid” : Temporal segmentation of reference and test sequence showing yellow-tinted static-, blue-tinted movement-, and
action-segments (top). Descriptor score margins and correctness (middle). Common frames for selected temporal segments (bottom)
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