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Abstract

The generation of virtual models of cultural heritage assets is of high interest for documentation, restoration,

development and promotion purposes. To this aim, non-invasive, easy and automatic techniques are required. We

present a technology that automatically reconstructs large scale scenes from panoramic, high-resolution, spherical

images. The advantage of the spherical panoramas is that they can acquire a complete environment in one single

image. We show that the spherical geometry is more suited for the computation of the orientation of the panoramas

(Structure from Motion) than the standard images, and introduce a generic error function for the epipolar geometry

of spherical images. We then show how to produce a dense representation of the scene with up to 100 million

points, that can serve as input for meshing and texturing software or for computer aided reconstruction. We

demonstrate the applicability of our concept with reconstruction of complex scenes in the scope of cultural heritage

documentation at the Chinese National Palace Museum of the Forbidden City in Beijing.

Categories and Subject Descriptors (according to ACM CCS): Vision and Scene Understanding [I.2.10]: 3D/stereo

scene analysis—

1. Introduction

The generation of virtual models of cultural heritage objects

and scenes is an attractive tool for documentation, preser-

vation and promotion purposes. In particular, techniques for

reconstructing small-sized objects in 3D using image infor-

mation are getting accurate enough to produce useful mod-

els for archeology, architecture and educational applications.

In such scenarios, the object of interest is often placed in a

highly controlled environment where high-resolution images

can be acquired. However, in practical, out-of-lab situations,

this technology faces challenging issues. For large scale re-

constructions, a very large number of images are required to

cover the area to reconstruct, because each image sees only

a small part of the scene. If the image acquisition takes place

outdoor, the lighting conditions can produce strong varia-

tions of illumination between images.

The use of panoramic or spherical images for documenta-

tion has become a natural extension of the standard perspec-

tive images, leading to applications like Google Street View,

where the user can visualize the area by navigating inside a

spherical view. Acquiring high-resolution spherical images

is nowadays practical, fast and not necessarily expensive.

Figure 1: Dense point cloud of a sculpted bridge. Our

method automatically reconstructs this cloud from a set of

spherical images.

This can be done using a standard camera and specialized

hardware like motorized spherical panorama heads and ded-

icated automatic software, or more conveniently by using

complete hardware/software packages that automatize all

the steps, like Weiss AG’s Civetta Camera or SpheronVR’s

SpheroCam . In their current use however, spherical images

serve mainly for direct visualization, i. e. after the acquisi-

c© The Eurographics Association 2011.



Pagani et al. / Dense 3D point cloud generation from multiple high-resolution spherical images

tion, the scene can be observed only from the point of view

the image has been taken.

In this paper, we present a technique that merges the ideas

of image-based 3D reconstruction and spherical images. In-

stead of processing a huge number of standard perspective

images, we propose to use as input data a few single but

high resolution and high dynamic range images (HDRI). Ad-

ditionally, we propose to opt for a different image geometry

and replace standard perspective images by full spherical im-

ages that record the complete scene from one given point in

space. A real scene is then captured with help of spatially

distributed spherical images. This new kind of image data

delivers far more information than a standard digital camera,

as it captures the complete scene over an unique full sphere,

provides high resolution(up to 14,000×7,000 pixels), and

provides consistent and physically meaningful photometric

information (HDRI).

1.1. Related work

Image-based 3D reconstruction techniques primarily fo-

cused on small-sized objects in perspective images

[SCD∗06]. The classical problems that need to be solved are

(1) find the position and orientation of each camera and (2)

compute dense point clouds from image correspondences,

using the camera positions as prior information. To solve the

first problem, Snavely et al. suggest an automated method

for computing the cameras poses from perspective images

[SSS06]. The second problem is addressed for example by

Furukawa and Ponce [FP08], whose algorithm produces a

dense point cloud from perspective images, assuming the

camera positions are given. In order to achieve complete re-

constructions of sites, a lot of images are necessary (1000

and up). For perspective images, this can be done automati-

cally using for example the method of [VVG06]. Recent de-

velopments of the 3D reconstruction technology focus in try-

ing to solve the numerous problems that arise when the num-

ber of images grows. Some researchers focus on simplifying

the topology of unordered sets of images [SSS08], while oth-

ers develop dedicated implementations in order to decrease

the growing computational time. An interesting approach is

to use Internet photo collections as input for 3D reconstruc-

tion algorithms [GSC∗07]. Agarwal et al. [ASS∗09] have

shown that it is possible to use millions of photographs of a

city to reconstruct some of its major monuments in less than

24 hours on a Computer Cloud of 500 nodes. Together with

the method in [FCS∗10], this can produce city-scale recon-

struction if enough images are available. The computational

demand can also be reduced to 24 hours on a single (high-

end) PC, at the cost of quality decrease however [FGG∗10].

The usage of wide-angle lenses and panorama for recon-

struction has been only partially addressed. Studies on differ-

ent lens models have shown that a wide angle camera model

generally reduces drift accumulation in Structure from Mo-

tion techniques [SK05, KBK07], but the usage of multiple

perspective cameras as one omnidirectional camera (as in

[SY05]) only provides coarse reconstructions. In [MP06],

a generic autocalibration method for omnidirectional, cen-

tral projection cameras is derived, but the provided recon-

structions remain quite sparse. Kim and Hilton propose a

dense reconstruction technique for spherical camera pairs

[KH10]. Different from our work, they use only two spher-

ical views at a time for estimating depth information, con-

sidered as a narrow-baseline stereo system. Our method for

the computation of the camera’s pose and orientation works

with wider distances between cameras and therefore relies

on point matching between different views of the same ob-

jects. Epipolar geometry of spherical images is addressed in

[LF05]. We extend this work by introducing a new distance

for estimation of the epipolar matrix based on the spherical

geodesic distance. In [WH06], the authors suggest that the

use of spherical images for 3D reconstruction is possible. We

follow this idea and derive the necessary pipeline for produc-

ing a dense point cloud out of spherical images. In the con-

text of spherical images, Mauthner et al. present a technique

for matching regions in omnidirectional views by generating

perspective views from the spherical image [MFB06]. We

adopt a similar technique, but generate many affine trans-

formations instead of only one for increasing the chances of

matching, in the spirit of A-SIFT [MG09]. In addition, our

method generates point correspondences rather than region

correspondences.

The work of Barazzetti et al. [BFRS10] shares different

ideas with ours. The authors provide a way to derive 3D met-

ric information from multiple spherical images. However,

their approach for the computation of the pose transforms a

spherical problem into a perspective one by reprojecting the

sphere onto perspective images. In contrast, we use directly

spherical coordinates for Structure from Motion. A second

difference is that we provide a way to automatically compute

dense point clouds, whereas the reconstruction in [BFRS10]

mainly needs manual intervention from the user.

This paper contains several contributions. First, we show

that accurate and dense reconstruction of large scale scenes

is possible with tens of images instead of thousands. Second,

we derive an algorithm for computing affine invariant SIFT

features on color spherical images. Third, we propose a new

metric based on geodesic distance on the sphere and derive

the basic geometric tools for Structure from Motion using

that metric. Fourth, we show how to optimize the quality of

dense reconstruction by adapting the apparent object size in

each view before the dense matching step.

The remainder of the paper is organized as follows: Sec-

tion 2 presents the type of images we use as well as the

pipeline of our method. We present our Structure from Mo-

tion algorithm for spherical images in section 3 and our

Multiple View Stereo method in section 4. In section 5, we

present our results in two application scenarios before con-

cluding in section 6.
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Figure 2: Example of a spherical image: interior of the Tai

He Dian temple.
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Figure 3: Local camera coordinate system

2. 3D reconstruction from spherical cameras

In this section, we present the general idea of our method as

well as the different steps in our pipeline. Further details on

each step can be found in the subsequent sections.

2.1. Spherical images

As mentioned previously, we use dedicated hardware for ac-

quiring the images. Here we do not focus on the acquisi-

tion step, but rather describe the spherical image as input for

our algorithms (see Figure 2). The spherical images we use

are equivalent to an environment map, that is an image that

represents an omnidirectional view of a three-dimensional

scene as seen from a particular 3D location. Every pixel in

the image corresponds to a 3D direction, and the data stored

in the pixel represents the amount of light arriving from this

direction. In practice, the environment map is stored as a

rectangular pixel array, using the latitude-longitude projec-

tion: The environment is projected onto the image using po-

lar coordinates (latitude and longitude). A pixel’s x coordi-

nate corresponds to its longitude θ, and the y coordinate cor-

responds to its latitude φ. The upper-right corner corresponds

to the spherical coordinates (φ,θ) = (0,0) and the lower-left

to the coordinates (φ,θ) = (π,2π). The typical resolution of

the images is such that a range of 2π in θ is covered by ap-

prox. 14000 pixels and a range of π in φ is covered by ap-

prox. 7000 pixels. The spherical coordinate system of each

camera is related to an Euclidean coordinate system as de-

picted in Figure 3.

2.2. Reconstruction pipeline

In order to reconstruct dense point clouds from spherical im-

ages, we first compute the position and orientation of each
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Figure 4: Outline of our algorithm

camera using Structure from Motion (SFM), and then com-

pute dense points clouds using Multiple View Stereo (MVS)

techniques. We derive for each of these steps specific ap-

proaches to deal with the spherical geometry. Figure 4 shows

the different steps of our method.

3. Structure from Motion with Spherical Images

The aim of Spherical Structure from Motion is to find the

precise position and orientation of every spherical camera. It

takes a set of images as input and computes the position and

orientation of the cameras as output, as well as a sparse scene

geometry. As a first step, we compute salient points on the

images as well as correspondences (matches) between these

points for pairs of images. These image matches are then

used in an incremental scene reconstruction using a bundle

adjustment procedure.

3.1. Spherical Affine SIFT with color and HDR images

Matching points between two spherical images is not an easy

task. Because of the specific geometry of the cameras, the

appearance of a given point on two different images changes

drastically. In order to still find matches between spherical

images, we opted for a variant of the Affine-SIFT approach

(ASIFT) [MG09], a method that simulates all image views

obtainable by varying two camera axis orientation parame-

ters left over by the SIFT method [Low04]. The resulting

method is mathematically proved to be fully affine invariant.

Our method uses the same idea of views synthesis, but using

a spherical image as an input.

More precisely, given a spherical image, we compute a

regular distribution of n center points Mi over the sphere

surface. For each center Mi, we generate a perspective im-

age of fixed field-of-view centered on Mi by projecting the

sphere’s pixels on a tangential plane touching the sphere at

Mi. If we now vary the angle between the normal of that

plane and the lined formed by the center of the sphere and

Mi, we can generate various synthetic views of the same

scene corresponding to different affine transformations in the

ASIFT method. For each synthetic view, we apply a salient

point detector. Here we use a color variant of SIFT named

PC-SIFT [CPS10] for color images and an HDR variant of
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Figure 5: Spherical ASIFT example: (left) without Affine

simulations: 681 matches - (right) with Affine simulations:

2620 matches

SIFT [CPS11] for HDR images. PC-SIFT converts colors to

a perception based color space before computing SIFT fea-

tures in order to make SIFT descriptors invariant to illumi-

nation changes in standard color images. HDR-SIFT bases

on PC-SIFT and additionally models the light source dis-

tribution using a Gaussian Mixture Model in order to cre-

ate a material color image before applying PC-SIFT. Details

can be found in the cited papers. All the SIFT points found

in the virtual views are then reprojected onto the sphere to

find their spherical coordinates, but we keep their descrip-

tors from the affine views. In the reprojection process, we

merge points that are near to each other, but keep multiple

descriptors for each merged point. Figure 5 shows results

of the spherical ASIFT method. With affine simulations, we

get more than 4 times more matches between two spherical

images.

3.2. Structure from Motion on the sphere

Structure from Motion (SFM) is a technique that can re-

cover all the camera poses as well as a sparse scene structure

up to a scale [HZ00]. We fix this scale by setting the dis-

tance between the two first cameras to the unit distance. The

main idea is to compute the epipolar geometry of the two

first cameras from the matches, then triangulate all matched

points to get 3D coordinates. After this initialization, for

each remaining spherical camera, we successively perform

following steps: (1) add one new camera in the set, (2) get

2D-3D correspondences from the matches with already tri-

angulated points, (3) compute the pose of the new camera

using the DLT method [AAK71] and (4) triangulate all pos-

sible points from matches between calibrated cameras. Parts

of this procedure need to be treated carefully when dealing

with spherical images. We will now explain in details the

relevant parts.

3.2.1. Epipolar geometry of two spherical images

Let C1 and C2 be the centers of two spherical cameras and

(R, t) be the transformation between the cameras. A point

P has the 3D coordinates Pi in the Euclidean coordinate

frame of the camera Ci, so that following relation holds:

P2 = RP1 + t. We name p1 and p2 the normalized versions

of vectors P1 and P2, i. e. pi has unit length and points to the

same direction as Pi. The points pi can be seen as the images

of the point P on each spherical image. The remainder of the

demonstration follows the same idea as in the perspective

case: the vectors p2, t and Rp1 are coplanar, the normal of

the plane containing the vectors t and Rp1 is n = [t]
×

Rp1,

and p2 lying on this plane can be expressed by pT

2n = 0,

i. e. pT

2 [t]× Rp1 = 0. We therefore have the epipolar con-

straint for imaged points

p
T

2Ep1 = 0, E = [t]
×

R (1)

E can be linearly computed using eight pairs of corre-

sponding points [LH81]. In practice, we use much more

points and reject outliers using RANSAC [FB81]. Note that

equation (1) is the same as in the perspective case. The dif-

ference is that in the perspective case, the vectors pi are nor-

malized image points, i. e. usually having their Z coordinate

equal to 1, and not having unit length. Here we proved that

this equation holds for any central projection camera (includ-

ing our spherical cameras) as long as pi are considered as

3D Euclidean vectors. Actually it is well known [HZ00] that

solving equation (1) in the perspective case requires to con-

dition the input points to reach sufficient numerical stability.

We believe this is actually due to the incorrect normalization

on the image plane instead of as a unit vector. Using unit

vectors as in the spherical case allows for the computation

of the essential matrix without preliminary conditioning.

As in the perspective case, there exist four possible factor-

izations of E in R and t. For perspective images, one usually

resolves this ambiguity by stating that the 3D points should

lie in front of the cameras. Because spherical cameras have

no front, we here again have to generalize this concept and

state that the image points pi (unit vectors) and the 3D points

Pi must have the same direction. This allows us to find the

correct factorization.

We then can parametrize this pose using 5 parameters (3

for the rotation and 2 for the translation, the length of t

should remain 1), and optimize the pose using non linear

least squares method to minimize the distance of one point

to the epipolar line of the second point. Simply minimiz-

ing pT

2Ep1 would be erroneous, because this corresponds to

the sine of the geodesic distance on the sphere surface. In-

stead we compute the geodesic distance between the epipo-

lar plane and the image point on the surface of the sphere

dist_ep_geodesic = sin−1(pT

2Ep1), and locally project this

distance to a tangential plane to get a distance of same

dimensionality as in the perspective case. If the plane is

tangent on one of the points, the local projection gives

dist_ep_tangent = tan(dist_ep_geodesic), which turns out to

have the simple mathematical form:

dist_ep_tangent =
pT

2Ep1
√

1− (pT

2Ep1)2
(2)
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Note that equation (2) can also be used in the perspec-

tive case. If the intrinsic matrix K of the perspective image

is known, then pi are K-normalized image points. This dis-

tance is more accurate for image points that are far to the

camera center (especially in wide angle cameras). For spher-

ical images, using the distance of equation (2) instead of

the geodesic distance avoids making expensive trigonomet-

ric computations.

3.2.2. Pose of a sphere from 2D-3D correspondences

For the same essential reasons as for the epipolar geometry,

we can derive the DLT algorithm [AAK71] solving the pose

of a camera from 2D-3D correspondences for spherical im-

age points seen as 3D unit vectors. If PW is a 3D point in

the world (global) coordinate system and PC the same point

in the Euclidean coordinate system of the spherical camera,

our aim is to find R and t so that PC = RPW + t. PC projects

as a 3D unit vector p on the sphere, i. e. there is a unknown

positive λ such that λp = PC, so the cross product of p and

RPW + t is zero. This cross product gives us three equations

in the unknown elements of R and t, among which only two

are linearly independent. Thus 6 correspondences between a

3D point and its spherical image suffice to retrieve the pose.

In practice we use many points together with a robust outlier

rejection.

A non linear refinement of the pose can be done using

6 parameters. Here again, the definition of the error should

be carefully chosen. In the perspective case, the reprojec-

tion distance (image distance between the 2D point and the

reprojected 3D point) is often used. In the spherical case,

we first compute the geodesic reprojection distance. If p is

the unit 3D vector representing the spherical image point

and Pr the unit vector representing the reprojection of P on

the sphere, then we have dist_pt_geodesic = cos−1(p.Pr).
We then locally project this distance to a tangential plane.

Here the plane is tangent between the two points, so that

dist_pt_tangent = 2tan(dist_pt_geodesic/2), and the tan-

gential distance is

dist_pt_tangent = 2

√

1− p.Pr

1+ p.Pr
(3)

The distance in equation (3) can also be used for perspec-

tive images with K-normalized points.

3.2.3. Sparse Bundle Adjustment

Each time a new camera is added, we apply a global bun-

dle adjustment set over all the cameras and all the already

computed 3D points. To this aim, we use a modified ver-

sion of the Sparse Bundle Adjustment (SBA) package from

Lourakis and Argyros [LA09]. In our case, we need to com-

pute the reprojection error using spherical image points. We

therefore use the Euclidean representation of points on the

sphere as unit 3D vectors in the SBA package. Thanks to the

Figure 6: Sparse point cloud with orientation and position

of the 93 spherical cameras (blue dots)

spareness of the underlying normal equations, this step can

be done very efficiently. We typically compute SBA for tens

of thousands of 3D points and hundred thousands of repro-

jections within a few seconds.

3.3. Camera poses and sparse point clouds

It is worth noting that using spherical images instead of per-

spective ones has several advantages in the SFM pipeline.

First, due to their omnidirectional field of view, the cam-

eras “capture” 3D points in all the directions. This allows

for a natural balance of the errors in the underlying algo-

rithms that reduces the overall error in the camera pose. This

contrasts to the perspective case where in both epipolar ge-

ometry and DLT, the cameras can be calibrated only with

respect to 3D points lying in front of the cameras. This in-

evitably induces a larger error variance in the viewing direc-

tion of each camera. An extensive study of this phenomenon

is out of the scope of this paper, but it could be verified in all

our experiments. Second, the average amount of 3D points

(structure) generated for each camera in the SFM is much

larger than using perspective images. Figure 6 shows a top

view of the result of SFM. We used here 93 spherical cam-

eras covering the surface of a Chinese temple in the Forbid-

den City. Besides the positions of the camera, the SFM step

produced 193,552 3D points (green dots), spanning the com-

plete building including the ceiling and the elevated throne.

4. Dense multi-spheres stereopsis

The Structure from Motion step only delivers a sparse re-

construction of the structure. Now our aim is to obtain a

dense point cloud from the calibrated images. This step is

equivalent to the Multiple View Stereo step of the classical

pipeline. Here, we apply a similar method for spherical im-

ages.

According to the Middelbury challenge [SCD∗06], one

of the best methods to recover a dense point cloud from

calibrated views is the Patch-based Multiple View Stereo

(PMVS) method from Furukawa and Ponce [FP08]. This ap-

proach generates and propagates a semi-dense set of patches
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and gets a very accurate reconstruction. The method is a

match, expand, and filter procedure, starting from a sparse

set of matched keypoints, that are successively expanded be-

fore a filtering step based on visibility constraints (outlier

rejection). We therefore chose to adopt a similar approach

for our scenario. In the original method however, the images

are perspective and the intrinsic parameters of the cameras

have to be known. Inspired by PMVS, we propose a spheri-

cal variant, that we call S-PMVS.

4.1. Point cloud generation using anchor points

Using the sparse point cloud generated in the SFM step, we

can select a number of regularly distributed anchor points Ai

over the coarse model. The points Ai can be selected auto-

matically among the reconstructed 3D points on the struc-

ture using a constraint to get an uniform distribution, or they

can be selected by a user. They must not be one of the 3D

points from the SFM step, but should lie approximately on

the surface of the expected structure. We typically use be-

tween 10 and 30 anchor points. For each anchor point Ai,

and each spherical camera C j, we can generate a perspective

image Ii j from the spherical image by projecting the pixels

from the sphere on a tangent plane perpendicular to the line

through Ai and the center of C j. Ii j can be seen as a virtual

perspective view, where the anchor point Ai is visible in the

center of the image. The field of view of Ii j is set using an ar-

bitrary virtual focal length. Thus we can compute the intrin-

sic parameters of the image Ii j as a matrix Ki j. In addition,

because we know the pose R j, t j of the spherical camera C j

and the position of the point Ai, we can compute the pose of

the virtual camera Ii j as the composition of the pose R j, t j

and an internal rotation that makes the Z axis point to Ai. We

can therefore deduce the pose Ri j, ti j of the virtual image Ii j,

and its projection matrix Pi j = Ki j

[

Ri j|ti j

]

We now have for each anchor point Ai a set of virtual per-

spective images Ii j - one for each spherical camera center -

with their projection matrices Pi j. This is used as an input

for the standard PMVS algorithm to generate a dense point

cloud for the neighborhood of Ai. After generating the points

clouds for all the anchor points, we merge all the local clouds

in one single cloud.

4.2. Optimization of the dense reconstruction

The generation of point cloud based on anchor points works

well if the objects in the vicinity of the anchor points have

approximately a constant size across all the images. Because

of the different positions of the cameras, and therefore dif-

ferent depths of the point Ai in all the images, this is rarely

the case. The PMVS method being based on the normalized

cross correlation between patches in different images, this

method fails when the object size varies too much. In order

to solve that problem, we apply a simple yet powerful idea

when generating the virtual images: instead of using a con-

stant focal length fi for all images, we use a focal length

fi j that is proportional to the depth of point Ai in the image

Ii j. The effect of this technique is to adapt the zoom of each

virtual camera to make the apparent size of the object of in-

terest constant. With this optimization, the expansion step of

the PMVS method is much more efficient and large parts of

the objects can be reconstructed.

5. Results

5.1. Building interior

In the Tai He Dian scenario, we acquired 93 spherical images

of the interior of the Hall of Supreme Harmony, situated in

the middle of the Forbidden City in Beijing. The acquisition

time for 93 images is approximately 120 minutes. We find

approximately 50,000 affine SIFT points on each image. Af-

ter pairwise matching, we find up to 7,000 matches for each

camera pair. Figure 6 shows the distribution of the 193,552

3D points found after the SFM step, as well as the position

of the cameras on the floor. We then computed partial point

clouds with 38 anchor points. The resulting merged point

cloud contains over 100 millions points. In Figure 7, differ-

ent views of the reconstructed point cloud including an ex-

ternal one are shown. Note that the output of our algorithm

is a dense point cloud, not a surface. However, in many re-

gions, the density of the points is such that the point cloud

appears as a continuous surface.

5.2. Outdoor reconstruction

In a second scenario (bridge), we acquired 98 spherical im-

ages of an ancient sculpted bridge from the gardens of the

Forbidden City in Beijing, and used 49 anchor points. The

resulting point cloud with over 127 millions points is shown

in Figure 8. In this particular example, the stones of the

bridge and its walls have been completely reconstructed as

an apparently continuous surface. Note the level of detail

that could be recovered in the reconstruction of fine sculp-

tures on the walls (statues of lions and sculptures of drag-

ons).

6. Conclusion

In this paper, we have presented a method to generate dense

3D point clouds from high-resolution spherical images. The

main advantage of our method is that it requires much less

images than using a standard perspective camera. In order

to cope with the spherical geometry of the cameras, we pre-

sented several new algorithms required in the reconstruction

pipeline such as: spherical affine SIFT, spherical epipolar ge-

ometry and pose computation for spherical cameras using a

new distance based on the geodesic distance on the sphere,

and more suited to the spherical case. We have shown in two

applications that we can generate accurate point clouds with

over hundred millions of 3D points from around hundred of

camera positions. In our future work, we would like to go
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Figure 7: 3D reconstruction of the Tai He Dian temple. Top-left: external view. Top-right and second row: examples of inside

views

one step further in the reconstruction pipeline and provide

textured meshes based on our current point clouds.
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Figure 8: 3D reconstruction of the bridge. First row: real views. Second row: same views from the dense 3D point cloud. Third

row: additional close-up views of the sculpted walls. Fourth row: additional external views.
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