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Abstract

The aim of this work is the study of the integration of virtual objects into single views.
The use of single views in augmented reality is much more flexible for the end-user than
stereo pairs of images, because they require less intervention and preparation. A funda-
mental problem of augmented reality is to accurately recover the needed camera parame-
ters. While this problem is well-known when two views are available, specific algorithms
must be considered for the case of single views. These algorithms generally make use of
the geometric particularities of the scene. The camera model and its geometry are there-
fore of great importance, and are largely analyzed in this report.
The first task is to calibrate the camera by finding its internal parameters (mainly the focal
length and the principal point). One method for it is the use of vanishing points. Tech-
niques for the recovery of vanishing points in an image are presented, as well as known
calibration methods based on it. Another way to calibrate the camera is to use planar
structures, and an algorithm based on multiple planes is derived. The special case of
panorama is also discussed, with details about its construction and its calibration.
The second task for the integration of virtual objects is the estimation of the camera posi-
tion and orientation relative to a given coordinate system (pose). Again, vanishing points
and plane-based methods are discussed. Two novel algorithms for pose estimation from
multiple planes are presented. The pose can also be estimated in the case of known 3D
points coordinates. Seven recent algorithms based on this assumption are detailed and
compared. All the algorithms mentioned in this work have been implemented as a practi-
cal goal, and simple objects could be integrated into various images using different tech-
niques. The report discusses the implementation particularities and presents the results
obtained by comparative tests.

Zusammenfassung

Das Ziel dieser Arbeit ist die Studie der Integration virtueller Objekte in einzelne An-
sichten. Die Benutzung einzelner Ansichten in erweiterter Realität ist viel flexibler f̈ur den
Benutzer als stereoskopische Bilderpaare, da sie weniger Aufwand und weniger Vorbere-
itung erfordern. Ein grundlegendes Problem in erweiterter Realität ist die pr̈azise Bewer-
tung der notwendigen Kameraparamter. Wenn zwei Ansichten vorhanden sind, lässt sich
dieses Problem leicht lösen. Im Fall nur einer Ansicht m̈ussen spezifische Algorithmen
betrachtet werden. Diese Algorithmen nutzen im allgemeinen die geometrischen Eigen-
schaften der Szene. Das Modell der Kamera und die entsprechende Geometrie sind also
außerordentlich wichtig, und werden ausführlich in dieser Arbeit analysiert.
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Der erste Schritt ist die Kalibrierung der Kamera. Hier werden die internen Parameter
der Kamera (haupts̈achlich die Brennweite und der Hauptpunkt) bewertet. Eine Methode
benutzt dazu Fluchtpunkte. Die notwendige Techniken zur Detektion von Fluchtpunk-
ten und den darauf basierenden Kalibrierungsmethoden werden in der Arbeit vorgestellt.
Eine weitere M̈oglichkeit der Kalibrierung, die ebenfalls in der Arbeit behandelt wird, ist
die Verwendung von Ebenen. Auch Thema der Arbeit ist der besondere Fall des Panora-
mas, mit einer Beschreibung seiner Konstruktion und seiner Kalibrierung.
Der zweite Schritt f̈ur die Integration virtueller Objekte besteht darin, die Position und
Orientierung der Kamera relativ zu einem gegebenen Koordinatensystem zu berechnen.
Entsprechende Methoden, die auf Fluchtpunkten und auf Ebenen basieren, werden disku-
tiert. Zwei neue Algorithmen für die Position- und Orientierungsberechnung mit Hilfe
von mehreren Ebenen werden vorgestellt. Position und Orientierung der Kamera können
auch mittels bekannter 3D Punktkoordinaten berechnet werden. Sieben Algorithmen
die auf dieser Vorkenntnis basieren werden detailliert beschrieben und verglichen. Alle
erwähnten Algorithmen werden als praktisches Ziel implementiert, und einfache Objekte
werden in diverse Bilder mit verschiedenen Techniken integriert. Die Besonderheiten bei
der Implementierung und die Ergebnisse von Vergleichtests werden vorgestellt.

Résuḿe

Le but de ce travail est l’étude de l’int́egration d’objets virtuels dans des prises de vues
uniques. L’utilisation de vues uniques en réalité augment́ee est beaucoup plus flexible
pour l’utilisateur que les paires d’images stéréoscopiques, car elles demandent moins
d’intervention et de pŕeparation. Un probl̀eme fondamental en réalité augment́ee est
l’ évaluation pŕecise des param̀etres de la caḿera. Si ce probl̀eme est bien connu quand
deux vues sont disponibles, des algorithmes spécifiques doivent̂etre consid́erés pour le
cas des vues uniques. Ces algorithmes utilisent géńeralement les particularit́es ǵeoḿetri-
ques de la sc̀ene. Le mod̀ele de la caḿera et sa ǵeoḿetrie ont donc une grande importance
et sont largement analysés dans ce rapport.
La premìere t̂ache est de calibrer la caḿera en calculant ses param̀etres internes (prin-
cipalement la distance focale et le point principal). Pour cela, l’une des méthodes est
l’utilisation de points de fuite. Les techniques de détection de points de fuite dans une
image sont donc abordées, ainsi que les ḿethodes de calibration s’y rapportant. On peut
calibrer la caḿera d’une autre façoǹa l’aide de structures planes; un algorithme fondé
sur plusieurs plans estétudíe. Le cas particulier du panorama estégalement discuté, avec
une description de sa construction et de sa calibration.
La deuxìeme t̂ache ńećessaireà l’int égration d’objets virtuels est le calcul de la position
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et de l’orientation de la caḿera par rapportà un syst̀eme de coordonńees fix́e (pose).
Là encore, des ḿethodes fond́ees sur les points de fuites, puis sur les plans, sont dis-
cut́ees. Deux nouveaux algorithmes de calcul de pose dans le cas de plans multiples sont
propośes. La pose peut́egalement̂etre calcuĺee dans le cas òu les coordonńees 3D de
points de ŕef́erence sont connues; sept algorithmes récents s’y rapportant sontétudíes et
compaŕes. Au niveau pratique, tous les algorithmes mentionnés dans ce travail ont́et́e
implément́es, et des objets simples ont puêtre int́egŕes dans diverses images de différentes
façons. Le rapport traite des particularités de l’impĺementation et pŕesente les ŕesultats
obtenus lors de tests comparatifs.
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Chapter 1

Introduction

The objective of this work is the study of single views in visual computing. While many
algorithms for camera calibration and image augmentation require at least two different
views of a scene, the case of single views has become much interest in the computer vi-
sion community, as it is much more flexible. It has the advantage to be easier for the
end-user, and preexisting photographs can be used for augmentation. However, a single
image contains much less information than a set of two or more, and efficient methods
must be found to extract the interesting parameters of the images. This report extensively
reviews and classifies the known algorithms and suggests novel approaches for dealing
with single views. It also describes the implementation of a calibration toolkit and gives
the results of comparative tests.

First, the motivations and objectives of my study are outlined. An overview of the
remaining of this report is then provided.

1.1 Motivation and objectives

Augmented reality (AR) is a technique in which the user’s view is enhanced or augmented
with additional information generated from a computer model. Basically, applications of
this technology use the virtual objects to aid the user’s understanding of his environment.
The user can view the augmented scene on a portable screen or with a head-mounted
display. For example, the maintenance of a machine is made easier with virtual arrows
that show where are the buttons to press. Applications are found in medicine, industrial
processes, as well as in advertising and movies production.

In order to make AR systems effective, the computer generated objects and the real
scene must be combined seamlessly so that the virtual objects align well with the real
ones. It is therefore essential to compute accurately the viewpoint and the optical proper-
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ties of the camera. This step is known asalignmentbetween real and virtual world.

The alignment process is well understood in the case of stereo image pairs, and much
relevant information is available on this topic. The case of single images is more difficult,
as no information about the depth of points can be directly recovered. It has however
the advantage to be much more flexible, allowing for augmentation of images or videos
that have not be taken specially for an augmentation. Even paintings of the Renaissance,
which follows the same perspective rules that the eye or a camera, can be augmented, or
reconstructed, as seen in [6].

However, when considering only one view of a scene, new algorithms must be found,
as the methods for stereo images make use of the points correspondences between the
views. In the case of single views, the geometrical properties of the image is the basis of
the alignment algorithms. The objective of this work is to easily and correctly recover the
camera parameters from these properties. To this aim, a study of the geometry involved
in the imaging process is provided, and the known algorithms are detailed, with the idea
to classify them into main approaches. With the help of this registration, new found algo-
rithms are also described.

The practical goal of the work is the setup of a calibration toolkit, which enables an
user to augment single images in a efficient and fast way. The toolkit was to be imple-
mented inC++ .

1.2 Overview

Chapter2 gives an overview about the geometry of a camera, and details useful notions
for the algorithms. The hierarchy of geometries is explained there, and is connected to
the alignment problem via the properties of each geometry.

Chapter3 deals with the camera model used in this report and details the two parts
of the alignment problem, namely the camera internal calibration and the pose estimation.

Chapter4 presents the algorithms for camera calibration, divided in plane-based, van-
ishing points and panorama methods, while chapter5 deals with the three kinds of pose
estimation (plane-based, vanishing points and correspondences methods).

The implementation of the toolkitMAXCAL is detailed in chapter6, where several
tests of the algorithms are also described and interpreted. Conclusions are drawn in chap-
ter7.



Chapter 2

From projective to Euclidean Geometry

2.1 Introduction

Geometry is a good mathematical tool for representing objects in a world. To this aim,
Euclidean geometry is most used, insofar as it represents our 3D world very well, and
as the known invariants in Euclidean geometry correspond to those of a real world: for
example, the sides of objects have known or calculable lengths, intersecting lines describe
angles between them, and so on. Euclidean geometry is however not the only possible ge-
ometry representation, and is for example limited when it comes to describe the imaging
process of a camera.

Geometry can be divided into four groups. The simplest and more general group is
projective geometry, which is a basis for all three other groups. Affine geometry is a
subgroup of the projective one, and in turn includes metric geometry. The last level is
Euclidean geometry.

Each of these groups can be defined by their transformations and invariants. A trans-
formation defined at a geometric level leaves specifics objects or properties unchanged.
These objects are called invariants of the geometric level. Each geometry will be ex-
plained in term of its transformations and invariants in the next sections of this chapter.

Projective geometry models the imaging process of a camera very well, as it allows
for perspective projections. It also provides a mathematical representation appropriate
for computations. Knowing the projective geometry of an object and making use of the
known invariants of the hierarchy of geometries allows to recover up to the Euclidean
geometry of this object.

The following section are based on the introduction to geometry by Faugeras [10],

11
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Hartley and Zisserman [17] and Pollefeys [23].

2.2 Projective geometry

2.2.1 Definitions

A point in projectiven-space,Pn, is given by a(n + 1)-vector of coordinatesx =
[x1, x2, ..., xn+1]

>. At least one of these coordinates must differ from zero. Two points
represented by(n+1)-vectorsx andy are equal if and only if there exists a nonzero scalar
λ such thatx = λy. This will be indicated byx ∼ y. These coordinates represent the same
point and are calledhomogeneous coordinatesof the point.

Homogeneous points with coordinatexn+1 = 0 are calledpoints at infinity

A collineation is a mapping between projective spaces, which preserves collinearity
(i.e. collinear points are mapped to collinear points). A collineation fromPn to Pm is
mathematically represented by a((n+1)×(m+1))-matrixH. AgainH andλH represent
the same collineation, withλ a nonzero scalar.

A projective basisfor Pn is defined as any set of(n+2) points such that no(n+1) of
them are linearly dependent. The setei = [0, ..., 1, ..., 0]> for everyi = 1, ..., n , where 1
is in theith position anden+2 = [1, 1, ..., 1]> is the standard projective basis. Any point of
Pn can be represented by a linear combination of any(n+1) vectors of the standard basis.

2.2.2 The projective plane

The projective plane is the projective spaceP2 . A point ofP2 is represented by a 3-vector
x = [x1, x2, x3].

Points and lines

In an Euclidean plane, a line is represented by an equation such asax+ by + c = 0. In the
projective plane, this line is therefore naturally represented by the homogeneous vector
(a, b, c)> insofar as for anyk 6= 0, (ka, kb, kc) represents the same line.

A point of representation(x, y) in the Euclidean plane lies on the line if and only if
ax+by+c = 0 that is if(x, y, 1)(a, b, c)> = 0. In fact, the equation(kx, ky, k)(a, b, c)> =
0 is also true for anyk 6= 0. Therefore is the homogeneous vector(x, y, 1) a natural rep-
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resentation of this point inP2.

There is no formal difference between a point and a line inP2. The role of line and
points can be interchanged in statements concerning the properties of lines and points.
This is known as theprinciple of duality. ”To any theorem of 2-dimensional projective
geometry there corresponds a dual theorem, which may be derived by interchanging the
roles of points and lines in the original theorem”[17].

A point x lies on a linel if and only if x>l = 0. The intersection of two linesl andl ′

is the pointx = l × l ′. The line through two pointsx andx′ is the linel = x× x′

The linel∞ with canonical coordinates(0, 0, 1) is the line made of points of intersec-
tion of parallel lines.

Conics and dual conics

In Euclidean geometry, second-order curves such as ellipses, parabolas and hyperbolas
are easily defined. In projective geometry, these curves are collectively known asconics.

The equation of a conic in homogeneous coordinates is:

ax2
1 + bx2

2 + cx2
3 + 2dx1x2 + 2ex1x3 + 2fx2x3

or in matrix form:
x>Cx = 0

where the symmetric matrixC is given by:

C =

 a d e
d b f
e f c


C is an homogeneous representation of the conic. It has then 5 degrees of freedom (it

is represented by 5 independent values) Five points define five equations on the parame-
ters(a, b, c, d, e, f), resulting in an one-dimensional space of solutions. This shows that a
conic is entirely defined (up to scale) by a set of five points.

The line tangent toC at a pointx on C is given byl = Cx, as shown by Faugeras in
[10].

A line l tangent to the conicC satisfiesl>C∗l = 0. C∗ is the dual conic with matrix
adjoint toC. In case of non-singular symmetric matrixC∗ = C−1 (up to scale).
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Collineations

A 2D-collineation (also known as homography or projectivity) is an invertible mapping
from points inP2 such that preserves collinearity. It is represented by a non singular3×3
matrixH. It is defined by 8 parameters (9 values of the matrix less one for the unimportant
scale factor) and has then 8 degrees of freedom. For example, a central projection (such a
camera) maps points of a world plane to points of the image plane. Such an homography
is writtenx′ = Hx. KnowingH enables us to remove the projective distortion of a plane
in the image. Figure2.1 shows a metric rectification of a plane with a homography. A
well-known result is that the correspondence of 4 pairs of points is sufficient to entirely
defineH (up to scale). This result is derived in appendixA.1.

(a) (b)

Figure 2.1:Metric rectification with a planar homography Four points suffice to com-
pute the homography which maps a window to a perfect rectangle. (a) Original view of
the building facade (b) Metric rectified view

The point transformation is by definitionx′ = Hx. If a pointx lies on a linel, then the
transformed pointx′ lies on the linel ′ = H−>l, since the incidence of points on lines is
preserved byx′>l ′ = xH>H−>l = 0. This gives the transformation rule for a line:

l ′ = H−>l

In a similar manner, it can be shown that conics transforms as:

C′ = H−>CH−1

Cross-ratio in P2

Given 4 colinear pointsxi, i = 1, ..., 4 thecross ratiois defined as the ratio of ratios of
signed distances. In other words, one can express the pointsxi by:

xi = y + λiz
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for two points of the liney andz. Then the cross ratio is by definition:

{x1, x2; x3, x4} =
λ1 − λ3

λ1 − λ4

:
λ2 − λ3

λ2 − λ4

Like collinearity, the cross-ratios are invariants of a projective transformation. A cross
ratio is also defined for 4 lines intersecting at one point. For such a configuration, the
cross-ratio is defined as the cross ratio{x1, x2; x3, x4} of their 4 intersection points with
any linel not passing through the common point of intersection (see figure2.2).

l l1

l2

l3

l4

x1

x2

x3

x4

Figure 2.2:Cross ratio of four concurrent lines Four concurrent linesli intersect the
line l in the four pointsxi. The cross ratio of the lines is independent on the linel and is
given by the cross ratio of the four pointsxi.

2.2.3 The projective space

The projective spaceP3 is also called simply projective space. A point ofP3 is repre-
sented by a 4-vectorx = [x1, x2, x3, x4]. The dual entity of a point inP3 is the plane. It is
also described by a 4-vectorπ = [π1, π2, π3, π4]. A point x lies on a planeπ if and only if

4∑
i=1

πixi = 0

Points with coordinatesx4 = 0 form the planeπ∞ called the plane at infinity.
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Collineations

A 3D-collineation is an invertible mapping from points inP3 that preserves collinearity.
It is represented by a non singular4× 4 matrix H defined up to a scale factor and has 15
degrees of freedom.

As was the case inP2 The point transformation is by definitionx′ = Hx. If a point
x lies on a planeπ, then the transformed pointx′ lies on the planeπ′ = H−>π, since the
incidence of points on planes is preserved byx′>π′ = xH>H−>π = 0. This gives the
transformation rule for a plane:

π′ = H−>π

Cross-ratio

The cross-ratio inP3 is defined for four planesπ1, π2, π3 andπ4 that intersect at a linel.
The cross-ratio{π1, π2; π3, π4} is by definition the cross-ratio{l1, l2; l3, l4} of their four
lines of intersection with any planeπ not going throughl (see figure2.3) This cross-ratio
is projectively invariant.

π

π1

π2

π3

π4
l1 l2

l3

l4

Figure 2.3:Cross ratio of four planes intersecting at a lineFour planes intersecting
at a line πi intersect the planeπ at the four linesli. The cross ratio of the planes is
independent of the planeπ and is given by the cross ratio of the four linesli.

2.2.4 Discussion

Now that a framework for projective geometry has been created, it is possible to define
the 3D Euclidean space as embedded in a projective spaceP3. In a similar way, the image



CHAPTER 2. FROM PROJECTIVE TO EUCLIDEAN GEOMETRY 17

plane of the camera is embedded in a projective spaceP2. Then, a collineation exists that
maps the 3D space to the image planeP3 7→ P2 via a3 × 4 matrix. This will be dealt
with in detail in the next chapter.

As was outlined, the cross-ratio stays invariant to projective transformations. The
relations ofincidence, collinearityandtangencyare also projectively invariant.

2.3 Affine geometry

The next stratum is the affine one. In the hierarchy of groups it is located between the
projective and the metric group. This stratum contains more structure than the projective
one, but less than the metric or the Euclidean strata.

2.3.1 The affine plane

The line of the projective plane made of points withx3 = 0 is called theline at infinityor
l∞. It is represented by the vectorl∞ = (0, 0, 1)>.

The affine plane can be considered to be embedded in the projective plane under a
correspondence ofA2 7→ P2: X = [X1, X2]

> 7→ [X1, X2, 1]>. There is a one-to-one
mapping between the affine plane and the projective plane minus the line at infinity (with
equationx3 = 0.

Any two distinct affine parallel lines will intersect on the line at infinity. The point of
intersectionx = [x1, x2, 0]> has the coordinates of the commondirection[x1, x2] of these
lines. Thus,l∞ can be seen as made of directions of affine lines.

Affine transformations

A point x is transformed in the affine plane as follows:

x′ = Bx + b (2.1)

with B being a2× 2 invertible matrix, andb a 2× 1 vector. These transformations form
a group called the affine group, which is a subgroup of the projective group and which
leaves the line at infinity invariant. Note that every point of this line will not be invariant,
but the transformed point remains on this line, which is saidglobally invariant.

In projective spaceP2 it is then possible to define a collineation that keepsl∞ invari-
ant. This collineation is defined by a3× 3 matrixA of rank 3:

A =

[
B b
0>

2 1

]
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2.3.2 The affine space

As in the previous section, the plane at infinityπ∞ has equationx4 = 0 and the affine
space can be considered to be embedded in the projective space under a correspondence
of A3 7→ P3: X = [X1, X2, X3]

> 7→ [X1, X2, X3, 1]>. This is the one-to-one correspon-
dence between the affine space and the projective space minus the plane at infinity (with
equationx4 = 0).

As inP2, it can be seen that any pointx = [x1, x2, x3, 0]> onπ∞ represents the direc-
tion parallel to the vector[x1, x2, x3]

>. This means that two distinct affine parallel planes
can be considered as two projective planes intersecting at a line in the plane at infinityπ∞.

Affine transformations

Affine transformations of space can be written exactly as in equation (2.1), but with B
being a3 × 3 invertible matrix andb a 3 × 1 vector. Writing the affine transformation
using homogeneous coordinates, this can be rewritten as:

A =

[
B b
0>

3 1

]

Once the plane at infinityπ∞ is known, one can upgrade the projective representation
to an affine one by applying a transformation which brings the plane at infinity to its
canonical position (i.e.π∞ = [0, 0, 0, 1]>).This equation should therefore satisfy:

0
0
0
1

 ∼ T−>π∞

or:

T>


0
0
0
1

 ∼ π∞

This equation determines the fourth row ofT and all other elements are not con-
strained:

TPA ∼
[

A3×4

π>
∞

]

where the last element ofπ∞ is scaled to 1, andA3×4 =
[

A 03

]
, with det(A) 6= 0.
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2.3.3 Discussion

The invariants of the affine stratum are clearly the points, lines and planes at infinity.
Affine transformations also preserves parallel lines or planes, ratios of lengths of parallel
segments, ratios of areas, known asaffine properties.

As shown in the previous section, obtaining the plane at infinity (or similary the line
at infinity in 2D structures) allows for an upgrade to an affine representation. The plane
at infinity can be calculatede.g.by finding three vanishing points in the image.

2.4 Metric geometry

The metric stratum corresponds to the group of similarities. These transformations cor-
respond to Euclidean transformations (i.e. orthonormal transformation and translation)
complemented with a scaling. In this case there are two important new invariant proper-
ties: relative lengths and angles. Similar to the affine case, these new invariant properties
are related to invariant geometric entities: thecircular points for 2D and theabsolute
conic for 3D. The metric stratum allows for a complete reconstruction up to an unknown
scale.

2.4.1 The metric plane

Affine transformations can be adapted to not only preserve the line at infinity, but also
preserve two points on that line called theabsolute pointsor circular points. The circular
points are two complex conjugate points lying on the line at infinity. They are represented
by I = [1, i, 0]> andJ = [1,−i, 0]>, with i =

√
−1.

Imposing the constraint thatI andJ be invariant, the following is obtained from equa-
tion (2.1):

1

i
=

b111 + b12i + b10

b211 + b22i + b20

1

−i
=

b111− b12i + b10

b211− b22i + b20

which results in the following:

(b11 − b22)i− (b12 + b21) = 0− (b11 − b22)i− (b12 + b21) = 0

Then(b11 − b22) = (b12 + b21) = 0 and the following transformation is obtained:

X′ = c

[
cos α sin α
− sin α cos α

]
X + b (2.2)
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wherec > 0 and0 ≤ α < 2π. This transformation can therefore be interpreted as follows:
the affine pointX is first rotated by an angleα around the origin, then scaled byc and then
translated byb. Such a transformation is called a similarity.

Any similarity leaves the circular points invariant.

2.4.2 The metric space

In the metric space, affine transformations are adapted to leave the absolute conic invari-
ant. The absolute conicΩ∞ is obtained as the intersection of the quadric of equation∑4

i=1 x2
i = 0 with π∞:

4∑
i=1

x2
i = x4 = 0

which can be interpreted as an imaginary circle of radiusi =
√
−1 in the plane at infinity.

All the points onΩ∞ have complex coordinates. Ifx is a point onΩ∞, then the complex
conjugate pointx is also onΩ∞.

It can be shown that an affine transformation keepsΩ∞ invariant if and only if it can
be written in the following form:

X′ = cCX + b

wherec > 0 andC is an orthogonal matrix (i.e.CC> = I 3×3). The transformation is then
defined as a similarity. Writing the affine transformation using homogeneous coordinates,
this can be rewritten as in equation (2.2) with:

TM ∼
[

cC b
0>

3 1

]
(2.3)

While the absolute conicΩ∞ is represented by two equations, the dual absolute conic
Ω∗
∞ can be represented as a single quadric:

Ω∗
∞ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


which is its canonical form. The image of the absolute conicω (IAC) and the dual image
of the absolute conicω∗ (DIAC) are the 2D representations of the conics (after imaging
process). Their canonical form areω ∼ I 3×3 andω∗ ∼ I 3×3

To upgrade the recovered affine representation of the previous section to a metric one,
the absolute conic needs to be identified. This is done via the images of the absolute
conics as explained in later chapters.



CHAPTER 2. FROM PROJECTIVE TO EUCLIDEAN GEOMETRY 21

2.4.3 Discussion

The absolute conic is the invariant object of the metric stratum. Two other invariants in
this group are relative distances and angles.

As the upgrade from an affine to a metric representation requires the camera calibra-
tion matrix, this section is closely related to the topic of camera calibration, which will be
described in chapter4.

2.5 Euclidean geometry

Euclidean geometry is the same as metric geometry, the only difference being that the
relative lengths are upgraded to absolute lengths. This means that the Euclidean transfor-
mation matrix is the same as in equation (2.3), but without the scale factor:

TM ∼
[

C b
0>

3 1

]

The principal invariant of Euclidean geometry is the Euclidean absolute distance be-
tween points.

2.6 Degrees of freedom

A given transformation has a certain degree of freedom (dof) defined as the number of
variables needed to defined the transformation. For example a collineation in 2D geome-
try has 8 dof, whereas an affine transformation only has 6 dof.

2.6.1 Number of invariants

Hartley and Zisserman give a study of the hierarchy of the geometric structure together
with an interesting result [17]:
”Given a geometric configuration and a transformation of it, the number of functionally
independent invariants is equal to, or greater than, the number of degrees of freedom of
the configuration less the number of degrees of freedom of the transformation.”

This property can be used for finding the number of invariants of a configuration as
well as for finding the geometric transformations needed to upgrade to higher levels in the
hierarchy, as explained in the next subsection.
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2.6.2 Constraints and degrees of freedom

Given two transformationsTr1 andTr2 with respective degrees of freedomdof1 anddof2

(assumingdof2 > dof1) and one configuration geometricC. One can measure theTr1-
properties ofTr2(C) by specifyingdof2−dof1 functionally independentTr1-constraints
on the configurationC. With the example of an imaged plane, we have already seen that
there is an homography between the image-plane and the real plane. Since an homogra-
phy has 2 dof more than an affine transformation, one can make affine measurements on
the image plane (ratios of areas, ratios of lengths on parallel or colinear segments) once 2
affine-constraints have been given. Such a constraint can be the parallelism of two lines
or a known ratio of lengths on colinear segments. In the same way, one can make met-
ric measurements providing 4 metric constraints on that plane, or alternatively 2 affine
constraints and 2 metric constraints (using this result twice).

2.7 Summary

In this chapter, we have seen the hierarchy of geometries characterized by their trans-
formations and invariant geometricpropertiesthat are equivalent to the invariance of a
geometricentity. This hierarchy has been detailed for the cases of 2D and 3D geometry.
These relations are summarized in table2.1.

Note that the recovery of high-level geometry is necessary for the augmentation of an
image. When no absolute yardstick is available, metric geometry is the highest level of
geometric structure that can be retrieved from images. Metric and Euclidean geometries
differ only by the knowledge of the overall scale factor.

The presented hierarchy of geometries can be helpful for image processing, even with-
out a proper calibration. Indeed, replacing the invariant geometric objects in their canon-
ical position allows for an upgrade to a higher level geometry, where one can make use of
the corresponding properties. For example, Criminisi developed a metrology theory from
uncalibrated images, where precise affine measurements (e.g.ratio of lengths on parallel
lines) are deduced (see [6], [5]). A good comprehension of these geometries also leads to
simpler algorithms for pose and calibration, as developed in the next chapters.
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Geometry Matrix Invariant properties Invariant entities

Projective

[
A t
v> v

]
Collinearity,
concurrency, cross-ratio

Affine

[
A t
0> 1

] Parallelism, ratio of
lengths on collinear or
parallel lines, ratio of
areas and volumes, linear
combination of vectors
(e.g.centroid)

The line at infinityl∞
(2D), the plane at infinity
π∞ (3D)

Metric

[
sR t
0> 1

]
Ratio of lengths, angles

The circular pointsI , J
(2D), the absolute conic
Ω∞ (3D)

Euclidean

[
R t
0> 1

]
Length, area, volume

Table 2.1:The hierarchy of geometries, corresponding transformation matrices and
invariants In a n-dimensional space, the matrixA is an invertiblen × n matrix, R is a
n-dimensional rotation matrix,t andv n-vectors andv a scalar.



Chapter 3

Camera model and camera calibration

In order to study the properties of images taken by a television, photographic or CCD
camera, we need to know an accurate model of the imaging process, which transforms
real 3D scenes into a planar image. In this chapter, we will take a closer look to the
common used pinhole camera model.

3.1 Camera model

3.1.1 The pinhole camera model

The laws of image formation were already understood by the renaissance painters, who
studied geometry in order to reproduce correctly the perspective effects in the images of
the world that they were observing. In this section, a model of camera is presented.

We consider the central projection of points in space onto a plane showed in figure
3.1. Let the center of projection be the origin of an Euclidean coordinate system, and
consider the planez = f , which is called theimage planeor focal plane.

Under the pinhole camera model, a point in space with coordinatesM = (X, Y, Z)>

is mapped to the point on the image plane where a line joining the pointM to the center
of projection meets the image plane, as shown in figure3.1.

By similar triangles, one quickly computes that the point(X, Y, Z)> is mapped to the
point(fX/Z, fY/Z, f)> on the image plane. Ignoring the final image coordinates we see
that the transformation

(X, Y, Z)> 7→ (fX/Z, fY/Z, f)> (3.1)

describes the central projection mapping from world to image coordinates.

24
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Y

Z

X

M

Y

X

Z

f

m

C P

image plane

camera center

principal axis

y

x

Figure 3.1:Pinhole camera geometryC is the camera center andP the principal point.

The center of projection is called thecamera center. It is also known as theoptical
center. The line from the camera center perpendicular to the image plane is called the
principal axisof the camera, and the point where the principal axis meets the image plane
is called theprincipal point. The plane through the camera center parallel to the image
plane is called theprincipal planeof the camera.

3.1.2 The camera projection matrix

If the world and image points are represented by homogeneous vectors, the central pro-
jection is simply expressed as a linear mapping between their homogeneous coordinates.
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In particular, equation (3.1) may be rewritten in terms of matrix multiplication as:
X
Y
Z
1

 7→
 fX

fY
Z

 =

 f 0
f 0

1 0




X
Y
Z
1

 (3.2)

The matrix in this expression may be written asdiag(f, f, 1)[I |0]. Introducing the
notationX for the world point represented by the homogeneous 4-vector(X, Y, Z, 1), x for
the image point represented by a homogeneous 3-vector, andP for the3×4 homogeneous
camera projection matrix, the equation (3.2) is written compactly as:

x = PX

which also defines the camera matrix for the pinhole model of central projection as:

P = diag(f, f, 1)[I |0]

3.1.3 The camera calibration matrix

The expression (3.1) assumes that the origin of coordinates in the image plane is at the
principal point. In practice, it may not be, so that in general it exists a mapping

(X, Y, Z)> 7→ (fX/Z + px, fY/Z + py, f)>

where(px, py)
> are the coordinates of the principal point. This equation may be expressed

conveniently in homogeneous coordinates as:
X
Y
Z
1

 7→
 fX + Zpx

fY + Zpy

Z

 =

 f px 0
f py 0

1 0




X
Y
Z
1

 (3.3)

Now, writing:

K =

 f px

f py

1

 (3.4)

equation (3.3) has the concise form:

x = K[I |0]X (3.5)

The matrixK is called thecamera calibrationmatrix.
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3.1.4 Camera rotation and translation

Equation (3.5) holds if the camera is located at the origin of the world Euclidean coor-
dinate system with principal axis of the camera pointing straight down theZ-axis, as in
figure3.1. In general, points in space will be expressed in terms of a different Euclidean
coordinate frame, known as theworld coordinate frame. We see in figure3.2that the two
coordinate frames are related via a rotation and a translation.

Ycam

Zcam

Xcam

C

Z

X

Y

R, t

Figure 3.2:Euclidean transformation between the world and camera frames

If X̃ is an inhomogeneous 3-vector representing the coordinates of a point in the world
coordinate frame, and̃Xcam represents the same point in the camera coordinate frame,
then we may writẽXcam = RX̃ + t, whereR is a3 × 3 rotation matrix representing the
orientation of the camera coordinate frame, andt is a 3-vector representing the coordinates
of the origin of the world frame in the camera frame. This equation may be written in
homogeneous coordinates as:

˜Xcam =

[
R t
0 1

]
X̃ (3.6)

Putting this together with (3.5) leads to the formula:

x = K[R|t]X (3.7)

whereX is now in a world coordinate frame. This is the general mapping given by a
pinhole camera. The parameters contained inK are called theinternalcamera parameters,
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or the internal orientationof the camera. The parameters ofR and t, which relate the
camera orientation and position to a world coordinate system, are called theexternal
parameters or theexterior orientation.

3.1.5 More aboutK

CCD cameras

The pinhole camera model just derived assumes that the image coordinates are Euclidean
coordinates having equal scales in both axial directions. In the case of CCD cameras,
there is the additional possibility of having non-square pixels. If image coordinates are
measured in pixels, rectangular pixels introduce unequal scale factors in each direction. In
particular, if the number of pixels per unit distance in image coordinates aremx andmy in
thex andy directions, then the transformation from world coordinates to pixel coordinates
is obtained by multiplying (3.4) on the left by an extra factordiag(mx, my, 1). Thus the
general form of the calibration matrix of a CCD camera is:

K =

 fx x0

fy y0

1

 (3.8)

wherefx = fmx andfy = fmy represent the focal length of the camera in terms of pixel
dimensions in thex andy directions respectively. Similarly,̃x0 = (x0, y0) is the principal
point in terms of pixel dimensions, with coordinatesx0 = mxpx andy0 = mypy.

Finite projective camera

For added generality, we can consider a calibration matrix of the form:

K =

 fx s x0

fy y0

1

 (3.9)

The added parameters is known as theskewparameter. The skew parameter will be
zero for most normal cameras. However, in certain unusual instances (e.g. image of an
image), it can take non-zero values.

A camera for which the calibration matrixK is of the form (3.9) will be called afinite
projective camera.

Note that the left hand3×3 submatrix ofP, equal toKR, is non-singular. Conversely,
any3× 4 matrix P for which the left hand3× 3 submatrix is non-singular is the camera
matrix of some finite projective camera, becauseP can be decomposed asP = K[R|t],
using a QR-decomposition of the productKR.
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3.2 Radial distortion

The pinhole camera model described in the previous section is a good and simple model
for linear distortions. However, some video optics — like wide-angle or fish-eye lenses —
generates a lot of non-linear distortions. The most important deviation is generally a radial
distortion. This section describes the radial distortion problem and the solution applied
for this work, inspired by a proposition of Devernay and Faugeras in [9].

3.2.1 Real cameras

A camera follows the pinhole model if and only if the projection of every line in space is
viewed in the image as a line. In practice, this may not be the case, and lines will trans-
form into curves, as shown in figure3.3.

Figure 3.3:Radial distortion in an image The lines at the periphery are the most dis-
torded.

The mapping between 3D points and 2D image points can be decomposed into a per-
spective projection and a function that models the deviation from the ideal pinhole cam-
era. The image distortion model is usually given as a mapping from the distorded image
coordinates, which are observable in the acquired images, to the undistorded coordinates,
which are needed for further calculations.

The image distortion function can be decomposed in two terms: radial and tangential
distortion. Radial distortion is a deformation of the image along the direction from a point
called thecenter of distortionto the considered image point, and tangential distortion is
a deformation perpendicular to this direction. Actually, the tangential distortion need not
to be considered, insofar as its effect can be neglected in most of the application. In this
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model, the center of distortion can be different from the principal point of the camera.

Let R be the radial distortion function, andc = (cx, cy) the center of distortion.xd =
(xd, yd) being a point in the distorded image, we definex̂d = xd−c as the new coordinates
relative to the center of distortion. Similarly,xu and x̂u represent the undistorded point
(after correction) in the image coordinate system and relative toc respectively. We also

define the radiusrd =
√

x̂d
2 + ŷd

2 andru =
√

x̂u
2 + ŷu

2 (see figure3.4). ThenR is the
invertible mapping betweenru andrd:

R : ru 7→ rd = R(ru)

c c

xd xurd ru

radial distortion linear image

Figure 3.4:The model of radial distortion

The distortion model can then be written as:

x̂u = x̂d
R−1(rd)

rd

, ŷu = ŷd
R−1(rd)

rd

(3.10)

and similarly the inverse distortion model is given as:

x̂d = x̂u
R(ru)

ru

, ŷd = ŷu
R(ru)

ru

3.2.2 Radial distortion model

The question here is to choose an accurate model for the functionR. The lens distortion
model (3.10) can be written as a finite series:

x̂u = x̂d(1 + k1r
2
d + k2r

4
d + ...)
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It has been showed that using only the first-order parameterk1 leads to a sufficient
accuracy (0.1 pixel is a common value). The undistorded coordinates are then given by
the formula:

x̂u = x̂d(1 + k1r
2
d) (3.11)

The inverse distortion model is obtained by solving the following equation forrd,
givenru:

ru = rd(1 + k1r
2
d) (3.12)

This is a polynomial of degree three inrd, and can be solved using the Cardan method,
which is a direct method for solving polynomials of degree three (see appendixA.2).

3.2.3 Removing radial distortion

To find the distortion parameters of the camera, the idea is to enforce the lines to be
straight [9]. The algorithm is then semi-automatic, the user being asked to give sets of
points belonging to the same line (each set represents a line). Then a basic iterative error
minimizing algorithm is used, as follows:

• Assign reasonable values to the distortion parameters as initial values (practically
k1 = 0 andc in the center of the image).

• Undistord the points using these parameters and equation (3.11).

• Fit each set of undistorded points to a line using an SVD least squares line fitting,
as shown in figure3.5.

x2

x1

x3

x4 x5

x6

x7

l

d4

Figure 3.5:Best fit line for a set of pointsThe best fit line for the pointsxi is the linel
that minimizes the sum of the squared perpendicular distances

∑
i d

2
i .
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• Compute the distortion error
∑

χ2 (χ2 is the sum of the squares of the distances
from the points to the corresponding line), the sum being done over all the lines
sets.

• Optimize the distortion parametersk1, cx, cy to minimize the total distortion error,
by a nonlinear least-squares minimization method (Levenberg-Maquart).

• Compute the new distortion error

• When the relative change of error is less than a threshold, stop here. Else, update
the parameters with the optimized values and begin optimization again.

Having found the correct parameters, we usually want to use an image where the
distortion effects have been removed. To this aim, a new image is computed. For each
pixel of the new image, equation (3.12) is used to find the corresponding coordinates in
the distorded original image. In general, these coordinates will not be integers, so that a
linear interpolation of the neighbor pixels is computed to find the color of the undistorded
pixel. Figure3.6shows the results of distortion removal in the image of an indoor scene.
In the remaining of this report, it will be assumed that the images have been correctly
undistorded using the algorithm presented in this section.

(a) (b)

Figure 3.6:Distortion removal in an image of interior scene(a) Distorded image with
selected points (b) Result of distortion removal

3.3 Camera calibration

When working with images, it is often the case that no information about the camera
parameters is available. Camera calibration is therefore a necessary step in 3D computer
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vision in order to extract metric information from 2D images. For example, augmenting a
real image with virtual objects requires knowledge of the camera projection matrix in the
rendering step. In this section camera calibration approaches are outlined in more detail.

3.3.1 The camera projection matrix

As explained in section3.1, the model used for the camera is the pinhole camera model,
where the camera transformation is summarized as a3× 4 matrixP:

x = PX

whereX is a real three-dimensional point andx is the corresponding point in the image.
P can be decomposed into an upper-triangular3 × 3 matrix K and a3 × 4 pose matrix
[R | t]:

P = K [R | t]

whereR is an orthonormal3× 3 rotation matrix andt a 3-dimensional vector.

The elements of the camera calibration matrixK are the following 5 parameters:

K =

 fx s x0

0 fy y0

0 0 1


fx andfy are the focal distance in thex andy directions,s is the skew factor,x0 and

y0 are the coordinates of the cameras principal point.

3.3.2 Calibration approaches

The first method for camera calibration is the direct recovery of the elements ofP. This
computation is known asresectioning. It is usually performed from correspondences be-
tween 3-space and images entities. The most commonly used resectioning method is
perhaps the DLT (direct linear transformation) method originally reported by Abdel-Aziz
and Karara [1], which will be discussed in subsection3.3.3.

When processing more than one image taken by the same camera, or a video sequence,
it can be useful to take the intrinsic parameters and the extrinsic one separately into ac-
count. To this aim, and following the decomposition of the matrixP, camera calibration
can be further decomposed into two kinds of calibration:

• the intrinsic calibration is the calculation of the intrinsic parameters,i.e. of the
matrixK. When these parameters are fixed for all the images, the calibration has to
be done just once.
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• the pose estimationis the calculation of the matrix[R | t]. In fact, R is the rota-
tion matrix between the world coordinate and the camera coordinate, andt is the
translation between the two centers of these coordinate systems. This calibration
can however be performed only if the intrinsic parameters are known, and must be
done for each image.

Note that given a matrixP, it is always possible to retrieve the decompositionK [R | t]
by applying a QR-decomposition.

In the literature, the termcamera calibrationis used for both complete calibration
(intrinsic and extrinsic orientation) and just intrinsic calibration. In the remaining of this
report, we will use this term for intrinsic orientation only, insofar as we will generally
focus on the two problems separately.

3.3.3 The DLT algorithm

The direct linear transformation algorithm is a very simple algorithm to compute the ma-
trix P [17]. We assume a number of point correspondencesXi ↔ xi between 3D points
Xi and 2D image pointsxi are given. We are required to find the camera matrixP, such
thatxi = PXi for all i. This equation may also be expressed in terms of the vector cross
product asxi × PXi = 0. If the j-th row vector of the matrixP is denoted byPj, then we
may write:

PXi =

 P1>Xi

P2>Xi

P3>Xi


Writing xi = (xi, yi, wi)

>, the cross product may then be given explicitly as:

xi × PXi =

 yiP3>Xi − wiP2>Xi

wiP1>Xi − xiP3>Xi

xiP2>Xi − yiP1>Xi


SincePj>Xi = X>

i Pj for all j, this gives a set of three equations in the entries ofP, which
may be written in the form: 0> −wiX>

i yiX>
i

wiX>
i 0> −xiX>

i

−yiX>
i xiX>

i 0>


 P1

P2

P3

 = 0 (3.13)

The three equations of (3.13) are linearly independent, so that only the first two equa-
tions can be used: [

0> −wiX>
i yiX>

i

wiX>
i 0> −xiX>

i

] P1

P2

P3

 = 0 (3.14)
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From a set ofn points correspondences, we obtain a2n × 12 matrix A by stacking
up the equations (3.14) for each correspondence. The projection matrixP is computed by
solving the set of equationsAp = 0, wherep is the vector containing the entries of the
matrix P. This can be done very simply by using a single value decomposition (SVD) of
the matrixA [24]. 6 points correspondences are thus needed to retrieve the elements of
P. If the data is not exact, because of noise in the point coordinates, the SVD method has
the advantage to give the best solution in the least-squares sense.

3.3.4 Camera calibration

The camera calibration — or interior orientation problem — has many solution methods
which will be discussed in chapter4. In the following subsection, we will present different
approaches of the problem and derive important general results. Basically, the task is to
find the parameters of the calibration matrix:

K =

 fx s x0

0 fy y0

0 0 1

 (3.15)

This matrix has in general 5 parameters.

Common assumptions

When calibrating a camera, assumptions are often made to reduce the number of un-
knowns in the equations. Among these assumptions, we can cite:

Zero-skew assumption The skew effect can be neglected most of the time, insofar as
the skew value tends to be small. Settings = 0 gives us a 4-parameter matrixK.

Square pixels assumption When the pixels are believed to be square, the values offx

andfy are identical (focal length of the camera), resulting in a 4-parameter matrix. This
is also called theunit aspect ratio assumption, because pixel have an aspect ratio of 1.
The case of non-unit, but known aspect ratioα is equivalent to unit aspect ratio in terms
of unknowns reduction, providing a simple conditioning step. The zero-skew assumption
and the square pixel assumption can be combined together to form the 3-parameter matrix

K =

 f 0 x0

0 f y0

0 0 1
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Known principal point assumption The principal point can be known or arbitrary set
to the center of the image. In the latter case, the results seem to be good enough, although
the calculated principal point can lie far away from this center. When this assumption is
used, the origin of the image coordinate system is often set to the principal point by a pre-
translation of the image points, providing the computationally easier casex0 = y0 = 0.
The three mentioned assumptions may be combined together: The resulting matrixK
depends only on the parameterf , and is known as theone-parameter matrixK.

K =

 f 0 0
0 f 0
0 0 1


The image of the absolute conic

The image of the absolute conic is an interesting geometrical object for intrinsic calibra-
tion. Indeed, there is a simple relation between the IACω and the camera calibration
matrixK, which we will derive in this section.

We refer to the notions of plane at infinityπ∞ and absolute conicΩ∞ defined in chap-
ter 2. The points lying onπ∞ are called thedirectionsX∞ = (X1, X2, X3, 0) = (d>, 0).
Ω∞ It is a point conic onπ∞.

With a general cameraP = K [R | t], points onπ∞ are imaged as:

x = PX∞ = K [R | t]

(
d
0

)
= KRd (3.16)

KR is the planar homography betweenπ∞ and its image. Now, under a point homog-
raphyx 7→ Hx a conicC maps asC 7→ H−>CH−1. Since the absolute conicΩ∞ is on
π∞, we can compute its image under this camera, and find

ω = H−>IH −1

= (KR)−>I (KR)−1

= K−>RR−1K−1

= K−>K−1

Like Ω∞, ω is an imaginary point conic with no real points. However, it will be very
useful for algebraic computations. Its inverse is called the dual image of the absolute
conicω∗.

Onceω or equivalentlyω∗ is identified in an image, thenK is also determined since
we have the equations:

ω = K−>K−1 (3.17)
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ω∗ = KK> (3.18)

We thus use equation (3.18) and the property that a symmetric positive definite matrix may
be uniquely decomposed into a product of an upper-triangular matrix and its transpose,
by the Choleski factorization [24].

Assumptions and the IAC

As explained above, the image of the absolute conicω(IAC) and its dual conicω∗ (DIAC)
can be used in the calibration algorithms instead of directlyK. The corresponding matri-
ces are symmetric3×3 matrices and have 5 degrees of freedom (6 for the upper-triangular
part less 1 for the arbitrary scale factor). WhenK is used, common assumptions are made
to reduce this number of parameters. We will now look at the influence of these parame-
ters onω andω∗.

The forms of the IAC and the DIAC for a camera with calibration matrixK as in
equation (3.15) are:

ω∗ =

 f 2
x + s2 + x2

0 sfy + x0y0 x0

sfy + x0y0 f 2
y + y2

0 y0

x0 y0 1


and:

ω =
1

f 2
xf 2

y

 f 2
y −sfy −x0f

2
y + y0sfy

−sfy f 2
x + s2 x0sfy − y0f

2
x − s2y0

−x0f
2
y + y0sfy x0sfy − y0f

2
x − s2y0 f 2

xf 2
y + f 2

xy2
0 + (fyx0 − sy0)

2


If the zero-skew assumption is made,i.e.s = 0, then the expressions simplify to:

ω∗ =

 f 2
x + x2

0 x0y0 x0

x0y0 f 2
y + y2

0 y0

x0 y0 1


and:

ω =

 1/f2
x 0 −x0/f

2
x

0 1/f2
y −y0/f

2
y

−x0/f
2
x −y0/f

2
y 1 + x2

0/f
2
x + y2

0/f
2
y



Concerning the IACω, one can observe following simple computational results.

• if s = 0 thenω12 = ω21 = 0. This reduces the number of parameters to 4.

• if furthermorefx = fy, thenω11 = ω22, andω depends on 3 parameters.
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• if the principal point(x0, y0) is also known, thenω13 = ω31 = −x0ω11, andω23 =
ω32 = −y0ω22, all together leading to a one-parameter matrixω.

In the case of the DIACω∗, the results are slightly different.

• if s = 0 then no linear relation between theω∗
ij can be found, andω∗ still has 5

independent unknown parameters.

• if the principal point(x0, y0) is known, thenω∗
13 = x0, ω

∗
23 = y0 andω∗ has 3

independent unknown parameters.

• if fx = fy together with the two above mentioned assumptions, thenω∗ has 2
independent unknown parameters.

Table3.1 gives the behavior of the IAC and the DIAC under different assumptions.
The number of remaining independent unknowns is given in the last two columns. Under
the assumption of known principal point, the IAC and DIAC have the same number of
independent parameters asK, except when the aspect ratio is known without a zero-skew
assumption. However, a known principal point is a far less tenable assumption than the
two others, and the principal point is usually an unknown to be recovered. Table3.1shows
that the IAC should be preferred in this case, insofar as its form more clearly reflects the
role of each calibration parameter than does the form of the DIAC.

This results will be useful for determining the minimal number of equations needed
for solving equations involvingω or ω∗.

3.3.5 Pose estimation

The pose estimation — or exterior orientation — is the problem of determining the posi-
tion and attitude of a perspective camera from correspondences between three-dimensional
reference objects and their two-dimensional images. It can be solved only once the cal-
ibration is known. The basic idea is to find the Euclidean transformation between the
camera coordinate system and the world coordinate system (see figure3.2 p27), in form
of a3× 3 rotation matrixR and a3× 1 translation vectort.

Different algorithm for pose estimation are presented in chapter5.
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KPP ZS KAR Constraints onω Constraints onω∗ # K # ω # ω∗

5 5 5
× 4 5 5

× ω12 = 0 4 4 5
× × ω12 = 0 , 3 3 5

ω11 = r2ω22

× ω13 = −x0ω11 − y0ω12, ω∗
13 = x0 , 3 3 3

ω23 = −x0ω12 − y0ω22 ω∗
23 = y0

× × ω13 = −x0ω11 − y0ω12, ω∗
13 = x0 , 2 3 3

ω23 = −x0ω12 − y0ω22 ω∗
23 = y0

× × ω12 = 0 , ω∗
12 = x0y0 , 2 2 2

ω13 = −x0ω11 , ω∗
13 = x0 ,

ω23 = −y0ω22 ω∗
23 = y0

× × × ω12 = 0 , ω∗
12 = x0y0 , 1 1 1

ω13 = −x0ω11 , ω∗
13 = x0 ,

ω23 = −y0ω22 , ω∗
23 = y0 ,

ω11 = r2ω22 ω∗
22 − y2

0

= r2(ω∗
11 − x2

0)

Table 3.1: Effects of common assumptions on the IAC and the DIACLinear con-
straints obtained under the assumptions of zero skew (ZS), known principal point(x0, y0)
(KPP) and known aspect ratior = fy/fx (KAR). The three last columns give the number
of remaining linearly independent parameters inK, ω andω∗ respectively.



Chapter 4

Single view camera calibration

Camera calibration is the determination of the calibration matrixK. When only one view
is used, the calibration may be performed with a calibration grid, or from the properties of
the scene, such as vanishing points. In this chapter, the main camera calibration methods
for a single view are described.

4.1 Calibration from planar structures

4.1.1 One plane

This algorithm performs a camera calibration from 4 coplanar imaged points with known
world coordinates.

We make thezero-skewassumption and theknown principal point assumption.
Hence,K depends on the two parametersfx andfy.

The idea here is to calculate the planar homographyH which maps the points on the
world plane to the image. Insofar as we consider only one plane, we can always choose
the coordinate system so that the points have a nullz-coordinate. If the equation of the
plan is known and notz = 0, it will be no matter to change the world coordinate system
after the calibration process.

Now, choosing the plane equation asz = 0, a 3D point on the plane has the form
X = (X, Y, 0, 1), and is defined by just two coordinatesx andy. It is projected into the
image via the matrixP, yielding the measured 2D pointx:

40
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x = PX

= K [r1r2r3t]


X
Y
0
1


= K [r1r2t]

 X
Y
1


= H

 X
Y
1



(4.1)

It is a well known problem to compute a planar homography from points correspon-
dences. Such a homography is a3× 3 matrix defined up to a scale factor and is therefore
entirely defined by 8 values. It has been shown that the correspondence of two points gives
two independent linear equation on these values, so that 4 sets of two points in general
position (no three of them are colinear) are sufficient to define the homography (see also
appendixA.1). We assume that this homography has been found. Then the calibration
problem is simplified to retrievingP given the homogeneous equation:

K [r1r2t] ∼ H (4.2)

In this section we show how to perform the intrinsic calibration of the camera from the
equation (4.2). We first turn this homogeneous equation into an inhomogeneous equation,
introducing a homogeneous factorλ:

H = λK [r1r2t] (4.3)

which we transform:

K−1H = λ [r1r2t] (4.4)

Using the fact thatr1 andr2 are orthonormal, we can multiply (4.4) by its transpose to
obtain:

H>K−>K−1H =

 λ2 0 ×
0 λ2 ×
× × ×

 (4.5)

K−>K−1 is known as theimage of the absolute conicω and is described in chapter3.
Its matrix can be simplified, when(x0, y0) = (0, 0) (provided an easy conditioning step
before the computation ofH) ands = 0:
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ω =

 1/f2
x 0 0

0 1/f2
y 0

0 0 1


Then, the equality of the two first terms of the diagonal in the equation (4.5) on the one

hand, and the nullity of the upper middle term on the other hand give two linear equations
in 1/f2

x and1/f2
y :

h2
111/f

2
x + h2

211/f
2
y + h2

31 = h2
121/f

2
x + h2

221/f
2
y + h2

32 (4.6)

h11h121/f
2
x + h21h221/f

2
y + h31h32 = 0 (4.7)

These equations can be solved withe.g.a Singular Value Decomposition (SVD) [24],
to obtain the values offx andfy.

In a single view, the coordinates of world points are not always known. A good way
to use this planar calibration is to manually or automatically detect an imaged square,
and then assign the world coordinates(0, 0), (0, 1), (1, 0) and(1, 1) to the corners for the
calibration.

4.1.2 Multiple planes

The calibration method described above can easily be extended to multiple planes [28],
[33]. Having p planes, the idea is to compute thep homographiesHi corresponding to
each plane-to-image transformation, and make use of the equationsHi ∼ K[ri

1r
i
2t

i] and of
the relations between theri’s.

We first compute for thep planes the homography between the plane and its image.
We need for this the correspondence of 4 points of each plane. This can be simplified by
square markers with unit coordinates. We then have for each planei:

K
[
ri
1r

i
2t
]
∼ Hi (4.8)

where[ri
1r

i
2t] is the transformation matrix from the camera coordinate system to the local

coordinate of the planei.
Like in section4.1.1, we then use the fact thatri

1 andri
2 are orthonormal to find:

H>
i ωHi =

 λ2 0 ×
0 λ2 ×
× × ×

 (4.9)

The equality of the two first terms in the diagonal of equation (4.9) gives one equation
in the 6 independent terms ofω:

h>
1 ωh1 − h>

2 ωh2 = 0 (4.10)



CHAPTER 4. SINGLE VIEW CAMERA CALIBRATION 43

which is linear in the terms ofω:

h12h11ω11 + h22h21ω22 + h32h31ω33

+(h22h11 + h12h21)ω12 + (h32h11 + h12h31)ω13

+(h32h21 + h22h31)ω23 = 0
(4.11)

The nullity of the upper-middle term in equation (4.9) gives another equation in the
ωij ’s:

h>
1 ωh2 = 0 (4.12)

also linear in the terms ofω:

(h2
11 − h2

12)ω11 + (h2
21 − h2

22)ω22 + (h2
31 − h2

32)ω33

+2(h21h11 − h22h12)ω12 + 2(h31h11 − h32h12)ω13

+2(h31h21 + h32h22)ω23 = 0
(4.13)

Applying this for all p planes leads to a set of2p equations in theωij ’s. When 3
planes are used, the entire matrixω can be retrieved, but one can also make assumptions
to reduce the number of unknowns and improve precision. For example, when zero-skew
and square pixels are assumed, only two planes are necessary. If in addition the principal
point is known, one plane is enough. In either case, an SVD decomposition [24] of the
matrix of equations helps to find the best result. Whenω is known, an easy Cholesky de-
composition ofω gives the matrixK. It is worth noticing here that a too important noise
may result in a non positive definite matrixω, which can not be decomposed.

This algorithm can be used either withp planes in one image, or with one plane seen
from different views of a camera with constant intrinsic parameters. When finding the ho-
mographies, the patterns (squares, rectangles) do not need to be equally scaled, because
only the orthogonality of the local rotation is considered.

A geometric interpretation

Hartley and Zisserman give in [17] a simple calibration deviceconsisting of three squares
on planes which are not parallel. The homography between each square and its image is
computed. Their algorithm then differs from the one presented above: for each plane-to-
image homography, the image of the circular pointsI , J = (1,±i, 0) are computed. A
conic is then fitted to the six obtained imaged circular points. Since the circular points
belong to the absolute conicΩ∞, their images belong to the image of the absolute conic
(IAC) ω, and the fitted conic isω.
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The derived equations are actually the same as those explained above. Indeed, given
a homographyH, the fact that the image ofI andJ are points ofω is expressed:

(
1 ±i 0

)
H>ωH

 1
±i
0

 = 0

(h1 ± ih2)
>ω(h1 ± ih2) = 0

Considering separately the real and imaginary parts of this equation gives:

h>
1 ωh1 − h>

1 ωh1 = 0

and:
h>

1 ωh2 = 0

which are the equations (4.10) and (4.12). This can be explained geometrically as fol-
lows: as seen in chapter2, the absolute conicΩ∞ is an invariant of themetric geometry.
By enforcing the images of the circular points to be on the IAC, we leave the absolute
conic invariant under the transformation, which therefore must be a similarity. The first
derivation also assumes that points undergo a similarity (orthogonality and same length
of the two first rotation vectors). The fact that the transformation is a similarity is thus
expressed in two different ways through these two derivations.

4.2 Calibration from vanishing points

Vanishing points are very important in the calibration process. In this section the con-
tribution of vanishing points is outlined in more details, and example of possible use are
given.

4.2.1 Calibration and rays

In the projection process, an image pointx back-projects to a ray defined by the camera
center andx. Calibration relates the image point to the ray’sdirection. Suppose points
on the ray are written as̃X = λd in the camera Euclidean coordinate system, then these
points map all to the pointx = K[I |0](λd>, 1)> = Kd. Thus, the camera calibration
matrix K is the transformation betweenx and the ray’s directiond = K−1x measured in
the camera’s Euclidean coordinate system.

The angle between two rays corresponding to image pointsx1 andx2 can be obtained
from the cosine formula for the angle between two vectors:
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cos θ = (K−1x1)>(K−1x2)√
(K−1x1)>(K−1x1)

√
(K−1x2)>(K−1x2)

=
x>
1 (K−>K−1)x2√

x>
1 (K−>K−1)x1

√
x>
2 (K−>K−1)x2

=
x>
1 ωx2√

x>
1 ωx1

√
x>
2 ωx2

(4.14)

whereω = K−>K−1 is the image of the absolute conic.
In general, this equation can not easily be used to findω, insofar as it leads to a

quadratic equation in the entries ofω. However, when the two points correspond to two
orthogonal rays, this equation simply becomes:

x>
1 ωx2 = 0 (4.15)

Such relations between two points lead to linear relations in the entries ofω. Once
ω has been found, it is no matter to retrieveK by a Cholesky decomposition [24]. The
question is how to find points whose corresponding rays are orthogonal.

4.2.2 Vanishing points

d

d

Z

Y

c

v

M4

M1

M2

M3

m1

m2

m3

m4

Figure 4.1:Vanishing point formation The vanishing point of the world line is obtained
by intersecting the image plane with a ray parallel to the world line through the camera
centerc.

The perspective geometry that gives rise to vanishing points is illustrated in figure4.1.
It is evident that geometrically the vanishing point of a line is obtained by intersecting the
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image plane with a ray parallel to the world line and passing through the camera center.
Thus, if two (sets of parallel) lines are orthogonal, their vanishing points will transform
into two orthogonal rays, and equation (4.15) can be used to findω. More generally, ifv1

andv2 are the vanishing points of two lines in an image, the angleθ between the two lines
direction is given by:

cos θ =
v>
1 ωv2√

v>
1 ωv1

√
v>
2 ωv2

(4.16)

4.2.3 Finding vanishing points in an image

Any perspective transformation leaves intersections invariant. Two parallel lines intersect
on the plane at infinity. Their images will then also intersect at the vanishing point. Find-
ing the vanishing point for the common direction returns to finding the intersection of two
or more parallel lines. Alternatively, when only one line is seen in the image, one can
used the cross-ratio invariance property.

More than two parallel lines

Determining a vanishing point by the intersection of just two parallel lines leads to high
sensibility, especially when the lines lie near from each other. A good improvement is to
allow the user to draw all the parallel lines he wants in one direction to find the vanishing
point of that direction. However, three or more imaged parallel lines will in general not
intersect at the same point in the image and a method must be found to efficiently recover
the coordinates of the vanishing point.

Centroid

A first way to solve the multiple line intersection problem is to find the intersection of each
pair of lines. This will given(n−1)

2
points of intersection, of which we take the centroid

as the correct global intersection point. This does not give the optimal vanishing point,
but is an acceptable approximation when the pairwise intersection points are near to each
other, at low computational cost.

Linear method

Another method is to find the closest point to all the lines. This is basically an optimization
method with quadratic cost function. In this case the partial differential functions are
linear and one exact solution can be found.

We consider a lineli defined by two pointsai = (ai
x, a

i
y)

> andbi = (bi
x, b

i
y)

>. We
notedix = (bi

x − ai
x)/‖b− a‖ anddiy = (bi

y − ai
y)/‖b− a‖. As shown in figure4.2, if
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v
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Figure 4.2:Best-fit intersection pointThe best fit intersection pointv minimizes the sum∑
i e

2
i of squared perpendicular distances to the linesli.

v = (x, y)> is the vanishing point to be found, the squared distance betweenli andv is:

e2
i = (v− ai)2 − ((v− ai).(

bi − ai

‖bi − ai‖
))2

which can be rewritten as:

e2
i = (x− ai

x)
2 + (y − ai

y)
2 − ((x− ai

x)dix + (y − ai
y)diy)

2

The sum of these distances is:

E =
n∑

i=1

e2
i

The partial derivatives are:

∂E
∂x

=
n∑

i=1

(2(x− ai
x)− 2dix((x− ai

x)dix + (y − ai
y)diy)

and:
∂E
∂y

=
n∑

i=1

(2(y − ai
y)− 2diy((x− ai

x)dix + (y − ai
y)diy)
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which we can write as two linear equations inx andy:

1

2

∂E
∂x

= x(n−
n∑

i=1

d2
ix)− y(

n∑
i=1

dixdiy) +
n∑

i=1

(ai
xd

2
ix + ai

ydixdiy − ai
x)

1

2

∂E
∂y

= y(n−
n∑

i=1

d2
iy)− x(

n∑
i=1

dixdiy) +
n∑

i=1

(ai
yd

2
iy + ai

xdixdiy − ai
x)

We are seeking an extremum ofE, so that the partial derivatives must be zero. This
gives a linear system of two equations in two variables easily solved by computing the
inverse of a matrix.

Weighted linear method

The above described method give the same weight to all the lines. A long line is however
generally more precise than a small one, so that the same method can be applied with
weighted squared errors, the weight being proportional to the square of the line length.

Maximum likelihood estimate

The method of finding the closest point to all the line is however not optimal. The max-
imum likelihood estimate (MLE) method, derived in [20], tends to not only optimize the
vanishing point position but the vanishing point and then corresponding lines as a set, as
shown in figure4.3.

With the notations of above, the maximum likelihood estimate of the vanishing point
is the point̂v such that there exist lineŝl1, ..., l̂n) that minimize the function

(v̂, l̂1, ..., l̂n) 7→
n∑

i=1

(d(l̂i, ai) + d(l̂i, bi))

whered(l, x) is the perpendicular distance between the linel and the pointx. Writing
gj(l̂i) = d(l̂i, ai) + d(l̂i, bi)), the search for an optimalv̂ is greatly simplified by the fact
that for all v̂ and alli, the linel̂i passing througĥv that minimizesgj(l̂i) is either the line

l̂i
′
that passes througĥv andci = (ai + bi)/2, or the linel̂i

′′
orthogonal tôli

′
and passing

throughv̂ [14]. One has then to minimize a function ofv̂ alone:

v̂ 7→
n∑

i=1

min{gj(l̂i
′
), gj(l̂i

′′
)}

The minimum of this function is found using a Levenberg-Macquart optimization.
The vanishing point given by the weighted linear method is found to be a good initial
value for the optimization to succeed. An extension to the case of lines defined by more
than 2 points is straightforward, as explained in [14].
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li

ai

bi

v

ˆ

ˆ

Figure 4.3:Maximum likelihood estimate vanishing pointThe vanishing point and the
lines are optimized as a set.

Cross-ratio invariance

Given two intervals on a line with known length ratio, the vanishing point on the line may
be determined [17]. A typical case is where three pointsa′, b′ andc′ are identified on a
line in an image. Supposea, b andc are the corresponding points on the world line, and
the length ratio|ab| : |ac| is known (see figure4.4).

If v is the point at infinity of that line andv′ the vanishing point on the image, the
cross-ratio invariance gives:

|a′b′|.|v′c′|
|a′c′|.|v′b′|

=
|ab|.|vc|
|ac|.|vb|

=
|ab|
|ac|

1 +
|b′c′|
|v′b′|

=
|ab|
|ac|

.
|a′c′|
|a′b′|

|v′b′| = |b′c′|
|ab||a′c′|
|ac||a′b′| − 1

which uniquely definesv′ (the distances are algebraic). A common usage is the case of
equal distance|ab| = |bc|, as shown in figure4.4.
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a
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c
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b'
c'

v'

d

d

v

Figure 4.4:Vanishing point and cross-ratio invariance

4.2.4 Determining the calibration matrix K from vanishing points

ω is a 3 × 3 symmetric matrix defined up to a scale factor. It is therefore defined by 5
linearly independent parameters (6 for the upper triangular part less 1 for the scale factor).
An equation of the type (4.15) give one homogeneous equation linear in these parameters.
A minimum of 5 pairs of orthogonal lines is also required to entirely solve the equations
and findω. Onceω has been found, a Choleski decomposition ofω = K−>K−1 directly
gives the calibration matrixK, which needs to be scaled so thatk33 = 1. An useful way
to solve these equations — especially when more than 5 pairs of lines are used — is the
Singular Value Decomposition [24] of the equations matrix, which provides the best so-
lutions in the least-squares sense.

Five pairs of orthogonal lines in general position is, however, not always as easy to
find as expected. That is why one may make use of common assumptions on the intrinsic
parameters to reduce the number of unknowns (see table3.1p39).

• if s = 0 then the number of parameters is reduced to 4, and so the number of
orthogonal pairs of lines to find.

• if furthermorefx = fy, then 3 pairs are needed.

• if the principal point(x0, y0) is also known, only one pair of lines is required.

4.2.5 Two orthogonal vanishing points

When only one pair(u, v) of orthogonal vanishing points are available, the matrixK must
be reduced to one parameter, by fixing skew to 0, aspect ratio to 1 and principal point
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to the center of the image. As the directionsK−1u andK−1v are orthogonal, we have
u>K−>K−1v = 0, that is:

( xu yu 1 )


1
f2 0 0

0 1
f2 0

0 0 1


 xv

yv

1

 = 0

which provides:
xuxv + yuyv + f 2 = 0

and hencef 2.
Simon used this algorithm for an initialization step of a markerless tracking protocol [26],
where the camera is calibrated from vanishing points. The idea here is to recognize a
rectangle in a plane, giving two orthogonal sets of parallel lines, and thus two orthogonal
vanishing points.

4.2.6 The case of 3 orthogonal vanishing points

A set of three vanishing points, each one being orthogonal to the two others, is often
visible in images of human-made environments. In this special case, each subset of 2
vanishing points is a pair of orthogonal vanishing points that can be used in equation
(4.15). These 3 pairs of orthogonal vanishing points are sufficient to find the focal length
and the principal point of the camera (three-parameter matrixK).

Caprile and Torre [3] and Cipolla [4] give the following geometrical interpretation of
this result. The image principal point is the orthocenter of a triangle formed by the three
vanishing points of orthogonal directions. To show this, let us write equation (4.15) for
two orthogonal vanishing pointsu andv and a 3-parameter matrixK:

(
xu yu 1

) 1/f2 0 −x0/f
2

0 1/f2 −y0/f
2

−x0/f
2 −y0/f

2 1 + x2
0/f

2 + y2
0/f

2


 xv

yv

1

 = 0

which can be rewritten:
(u− x0)(v− x0)

> + f 2 = 0 (4.17)

wherex0 = (x0, y0, 1)>

Considering the other vanishing pointw similarly gives:

(v− x0)(w− x0)
> + f 2 = 0 (4.18)

(u− x0)(w− x0)
> + f 2 = 0 (4.19)
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Subtracting (4.19) from (4.19) gives:

(u− x0)(v− x0)
> − (u− x0)(w− x0)

> = 0

hence:
(u− x0)(v− w)> = 0

This is the condition that(v − w) is orthogonal to(u − x0) (see figure4.5). The
other two orthogonality conditions can be similarly obtained and these imply thatx0 is
the orthocenter ofu, v, w. It is thus possible to compute the matrixK in a geometrical
way. Equation (4.17) can then be used to computef .

(a) (b)

Figure 4.5: Geometric construction of the principal point (a) Vanishing points de-
tection with three orthogonal sets of two parallel lines. (b) The principal point is the
orthocenter of the triangle formed by three orthogonal vanishing points. Heights are in
white.

4.3 Calibration in panoramas

When the viewing angle of a camera is small, one can construct panoramic views by using
properties of the perspective transformation. Such a panorama not only gives a larger view
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of the scene, but also includes more information than a single view. As we will see in this
section, this information can be helpful for camera calibration.

4.3.1 Planar panoramic mosaicing

We consider a set of images taken with a camera that is rotating around its center. Alge-
braically, if x andx′ are the images of a pointX before and after the rotation, we have:

x ∼ K
[

I | 0
]

X

x′ ∼ K
[

R | 0
]

X

∼ KRK−1K
[

I | 0
]

X
∼ KRK−1x
∼ Hx

with H = KRK−1. There is then a homographyH between the two images. Even if the
rotation is not known, this homography can be computed from 4 or more point correspon-
dencesx ↔ x′, as seen in appendixA.1. In fact, the rotation can also be recovered from
H without knowledge ofK (see [17] and [30]).

The first application is the planar panoramic mosaicing: images acquired by a rotat-
ing camera about its center are related to each other by a planar homography. One can
choose one image as reference image and register the others with the reference plane by
projectively warping them with the homographies which relate them to the reference im-
age. Then the initial reference image is augmented with the non overlapping part of the
warped images. Such a resulting panorama is shown in figure4.6.

4.3.2 Autocalibration from panoramas

The idea of autocalibration, or self-calibration, is that a camera can be calibrated directly
from multiple images, without calibrations grids or knowledge of the 3D structure of the
scene. It was first mentioned by Faugeras et. al. [11], and an application for the case of
panoramas was developed by Hartley [18].

Linear equations involving ω∗ and ω

In the construction of a panorama, an imageI0 is the reference image, and there is an
homographyHi between each other imageIi and I0, the relative motion being a pure
rotation. This homography can be computed from correspondences of images points, and
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Figure 4.6:Example of panoramaThree images are merged into one after a correcting
warping.

requires no information about the 3D scene. Now assuming that the intrinsic parameters
are constant for all images, we have for imageIi:

Hi ∼ KRiK−1

or:
HiK ∼ KRi (4.20)

The transpose of this equation is:

K>H>
i ∼ R>

i K> (4.21)

and multiplying each sides of equations (4.20) and (4.21) gives:

HiKK>H>
i ∼ KRiR>

i K>

Hiω
∗H>

i ∼ ω∗ (4.22)

Although equation (4.22) is a homogeneous equation,Hi can be normalized so that
det Hi = 1, this fixing the scale factor to be 1. We then have:

Hiω
∗H>

i = ω∗ (4.23)

which can also be written as:
H−>

i ωH−1

i = ω (4.24)
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Equations (4.23) and (4.24) results in 6 linear equations for the independent elements
of the symmetric matricesω∗ andω respectively. They can then be rewritten in an homo-
geneous linear form:

Aic = 0 (4.25)

whereAi is a6×6 matrix andc is the6×1 vector of the elements ofω∗ or ω respectively.
If the panorama has been constructed withm + 1 views, the matricesAi can be stacked
together to build a6m × 6 matrix A, and in generalc is determined uniquely from the
SVD of A [24].

Ambiguities in autocalibration

Although in equation (4.25) Ai is a 6 × 6 matrix, two views are not sufficient to solve
for c. It can be shown (see [18]) that in this case, a one-parameter family of matricesω∗

satisfies the equation (4.23), so thatAi has rank 4. Zisserman et al. reviewed possible
ambiguities in [34]. In the case of panoramas, the principal one is the case of rotations
with common axis. This ambiguity can be removed by providing more than 2 views with
different axis, or by making assumptions on the internal parameters of the camera (see
chapter3). Note that with the zero-skew assumptions, ambiguities still remains when the
rotation is about thex-, y- or z-axis of the camera. In this case, the added square pixels
assumption resolves the ambiguity.

ω versusω∗

We have seen that equivalent equations are obtained forω and ω∗. In fact using the
equations involvingω is attractive, because the zero-skew assumption directly gives linear
equations in the elements ofω. On the other hand, it is necessary to assume that the
principal point is known to obtain such linear equations in the case ofω∗. This second
assumption is less tenable than the first one, andω will therefore be usually preferred.

Extensions

Onceω, or equivalentlyω∗ has been found,K is deduce by a Cholesky decomposition.
Extensions of this algorithm have been described. Hartley gives a method of calibration
in the case of varying intrinsic parmeters in [16], and Triggs extended the algorithm to
other motions, by using planar scenes [30].

4.4 Summary

Three main approaches for camera calibration in single views have been described. The
first one is based on planar structures, and requires the computation of plane-to-image
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homographies. Another make use of the vanishing points, which can easily be extracted
from images with parallel lines. Different methods exist for estimating the vanishing
points, the best one involving a non linear optimization. Panoramas are a special case
of single views, insofar as they are single images constructed from multiple views. The
homographies computed for this reconstruction are helpful for a dedicated calibration
technique. Details of the implementation of the algorithms derived in this chapter are
given in chapter6, along with the results of tests.



Chapter 5

Single view pose estimation

Estimating the pose of the camera is the problem of finding the orientation and position
of the camera in a given world coordinate frame. This is a necessary step in augmented
reality, because the positions of objects are usually known relative to each other but not to
the camera. In this chapter, algorithms for pose estimation in a single view are presented.
Where not explicitly stated, we assume that the camera is calibrated,i.e. the calibration
matrixK is known.

5.1 Pose estimation from planar structures

5.1.1 One plane

As in section4.1.1, we assume that the planar homographyH between a plane and its
image is known.H can be found from 4 or more points correspondences. As explained
in chapter4, without loss of generality, we assume that the equation of the plane isz = 0.
We make use of the equation (4.4) already derived in chapter4:

H = λK [r1r2t]

With the knowledge ofK we can easily extractr1 andr2 from the normalized two first
columns ofK−1H. This leads to the scale factorsλ, and thus to the correct value fort.
Then, becauseR is a rotation matrix and therefore an orthonormal matrix,r3 is given by
the vector productr1 × r2. We can then write:

P = K
[

r1 r2 (r1 × r2) t
]

Since we only know‖λ‖ and not the sign ofλ, there subsists an ambiguity about the
sign of the orientation matrix. Assuming that the plane is seen in front of the camera, the
z-value oft must be positive. This constraint is known as thevisibility constraint.

57
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Note that this algorithm not always leads to an orthonormal matrixR, due mostly to
the noise when computingH. However, the orthogonality ofR can be enforced by apply-
ing properties of the Singular Value Decomposition of a matrix (see [24]).

5.1.2 Using a rectangle

The algorithm described in the last section can be easily applied if a square is detected
on the reference plane. Then, one has just to compute the homography which maps the
four imaged corners to the world coordinates(0, 0), (0, 1), (1, 1) and(1, 0) respectively.
Simon suggested an original way to use a rectangle in the reference plane in a similar
manner [26].

H is the homography which maps the world coordinates of a reference plane to the im-
age. We assume a rectangle has been detected in the reference plane. The four corners are
then assigned to the world coordinates of the rectangle(0, 0), (1, 0), (1, α), (0, α), where
α is the (unknown) aspect ratio of the world rectangle. This aspect ratio need not actually
be known, since the orthogonality of the lines are another valuable information. We first
make the assumption thatα = 1. The four sets of two points define the homography
Hs (s stands for square), which is computed like in the previous section (planez = 0).
Now, because we knowK, and observing that the effect of non-unitα is to premultiply
the world coordinates by the diagonal matrixD=diag(1,α, 1), we have:

Hs = HD (5.1)

The arguments of equation (4.1) still hold, and we have in our case:

H ∼ K[ r1 r2 t ] (5.2)

which leads to the equation:
Hs ∼ K[ r1 αr2 t ] (5.3)

α is thus given by the ratio of the first two columns of the orthogonal matrixK−1Hs.
We can then retrieve the original homography byH = HsD−1 = Hsdiag(1, 1/α, 1).

5.1.3 Multiple planes pose algorithm

In the last section, we assumed that the plane had equationz = 0. However, if the plane
has not the equationz = 0, the use of a transformation matrix will be helpful. A general
transformation matrixMp from a frame where the plane equation isz = 0 to a frame
where the equation isax + by + cz + d = 0 can be obtained as follows:
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if a = 0 andb = 0
then

Mp =


1 0 0 0
0 1 0 0
0 0 1 −d
0 0 0 1


else

Mp =


−b −ac a tx
a −bc b ty
0 a2 + b2 c 0
0 0 0 1


wheretx = −d/a andty = 0 if a 6= 0, or tx = 0 andty = −d/b if a = 0.

Indeed, one can verify thatMp is always invertible, and considering the case where
a 6= 0, a pointX = (x, y, 0, 1)> on the plane of equationz = 0 will transform to:

X′ = MpX =


−bx− acy − d/a

ax− bcy
(a2 + b2)y

1


which verifies:

ax′ + by′ + cz′ + d = −abx− a2cy − d + bax− b2cy + c(a2 + b2)y + d = 0.

Now, let derive a generalized version of equation (4.1). For more readability, we
denote by〈A〉 a matrixA without its third column. IfM is the transformation matrix
reflecting the equation of the considered plane, then we have:

H ∼ λ〈PM〉
∼ P〈M〉
∼ K[R | t]〈M〉

and thus:
K−1H ∼ [R | t]〈M〉 (5.4)

Multiplan with known planes equations

Equation (5.4) can then be rewritten as:

[R | t]〈M〉H−1K ∼ I 3×3
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whereI 3×3 is the3× 3 identity matrix.
Calling di, i = 1...3 the (known) columns of the matrix〈M〉H−1K andq>

i the (unknown)
rows of the matrix[R | t], we have: q>

1

q>
2

q>
3

( d1 d2 d3

)
∼ I 3×3

This last3 × 3 matrix homogeneous equation leads to 8 equations in the elements of
theqi’s, namely:

d>
1 q1 − d>

2 q2 = 0

d>
1 q1 − d>

3 q3 = 0

and fori 6= j:
d>

i qj = 0

These equations can be written in the following8× 12 matrixAp:

d>
1 −d>

2 0
d>

1 0 −d>
3

d>
2 0 0

d>
3 0 0
0 d>

1 0
0 d>

3 0
0 0 d>

1

0 0 d>
2



 q1

q2

q3

 = 0

Applying this forp planes, we obtain a linear equation system of the formAq = 0, where
A is a 8p × 12 matrix, andq =

(
q>

1 q>
2 q>

3

)>
. This system can be solved from 2

planes on, using a SVD method [24].

Multiplane without planes equations

The above mentioned multiple planes algorithm has the drawback that the relative posi-
tions of the planes have to be known. Thus, one could also compute the coordinates of the
planar points in the global world coordinate frame and then use another method, like DLT.

In many applications, the situation where the homographies between the planes and
their images are known, but not the planes equations, may arise. For example, if squares
are detected on different unknown planes, one can compute for each plane the homog-
raphy which transforms an unit square to its image. The idea here is to use only these
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homographies to compute the global pose. This problem is very similar to the computa-
tion of relative orientation between to cameras from planar scenes. Wunderlich showed
in [32] the following result: knowing the homographyH between two views of a plane
allows to find the relative orientation between the two poses, that is, the position of the
second camera in the first camera’s coordinates frame (see also figure5.1) . Triggs give
in an extension of [30] how to compute this pose fromH using a SVD-based method.

H

R,t

R1,t1 R2,t2

Figure 5.1:Relative pose from a planar homographyGiven two views of a planar scene,
the homography between the images of the plane leads to the transformation between the
coordinates systems of the two cameras

The analogy between one plane seen by two cameras and two planes seen by one
camera is however not straightforward. Suppose one plane is seen from two cameras.Pi

denotes the pose matrix of the camera in the plane coordinate system for imagei, with

Pi =

[
Ri ti
0 1

]

Then from the homographyH12 between the images we can compute the relative pose
Pr = P−1

2 P1. If now two planes are seen from one camera, then the decomposition ofH12

still gives Pr = P−1

2 P1, but the transformation between the two planes isP′r = P2P
−1

1 .
Unfortunately, there is no way to findP′r from Pr.

Instead, we can retrieve the matricesPi for each plane using the planar pose estimation
for one plane explained in section5.1.1. Then, one plane is taken as a reference plane,
say plane1, and we can compute the relative position of the other planes with the formula
P′ri = P1P

−1

i , i = 2...n. TheseP′ri are in turn used in a similar way as theMp to apply a
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multiple plane algorithm with equations.

This algorithm has the drawback that we use the less accurate one-plane algorithm to
find the equations, but the advantage that no equations have to be known in advance.

Extension to multiple views

In single view, one or multiple planes can be considered for pose estimation. If multiple
views are available, the case of one plane seen in multiple views may be interesting, be-
cause the motions between the views can be recovered from an inter-image homography,
and the result for one plane can be used for each view, leading to more accuracy. The
special case of multiple planes in multiple views is discussed in [27].

5.2 Pose estimation from vanishing points

One property of the vanishing points in camera calibration has been shown in section
4.2 p44, where the relations between orthogonal vanishing points and the image of the
absolute conic has been outlined. The details about the recovery of vanishing points in
an image is also detailed in section4.2.3p46. In this section, we assume that the three
vanishing points corresponding to the three directions of the world coordinate frame have
been recognized in the image. We denote byu, v, andw the vanishing points for thex-,
y- andz-direction respectively.

Now, u is the image of the vector(1, 0, 0, 0)>, so that we can write:

u ∼ P


1
0
0
0

 = Kr1

wherer1 is the first column of the rotation matrixR. Thus,

r1 ∼ K−1u

SinceR is an orthonormal matrix,r1 must have an unit length.r1 is then defined by:

r1 =
K−1u
‖K−1u‖

r2 andr3 are similarly found fromv andw, and the complete matrixR is:

R =
(

K−1u
‖K−1u‖

K−1v
‖K−1v‖

K−1w
‖K−1w‖

)
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Note that the sign of the vectorsri cannot be recovered. Since the determinant ofR
is positive, the three signs are known once two have been set, so that there is generally
4 possible orientations among which we have to choose. The differences between these
orientations is only a switch of sense along the principal directions.

The fourth column of the projection matrix depends on the position of the world co-
ordinate system relative to the camera coordinate system. An arbitrary reference pointO
can be chosen as the origin. Its image coordinateso = (ox, oy, 1) fix the translationt up
to an arbitrary scale factorλ:

λo = P


0
0
0
1

 = Kt

hence:
t = λK−1o (5.5)

In a single view and with no metric information this scale is indeterminate and can be
arbitrary set,e.g.λ = 1. However, a fifth point with known world coordinates will set the
metric with no ambiguity. Suppose we know the coordinates between a pointM of the
world and of its imagem. Then we have:

m∼ K(RM + t) (5.6)

Putting (5.5) in (5.6) gives:
m∼ KRM + λo

The vector product of the two sides of this equation is zero, which uniquely definesλ.

5.3 Pose estimation from 2D/3D correspondences

The information available for solving the pose estimation problem can be given in the
form of a set of point correspondences, each composed of a 3D reference point expressed
in object coordinates and its 2D projection expressed in image coordinates. Fishler and
Bolles [13] first mentioned the ”Perspective-n-point problem” as the problem to find the
pose of an object fromn such point correspondences. Three correspondences are the min-
imal set which provides a finite number of solutions. Solutions for the perspective-3-point
problem can be found in [7] and [15]. For three points, the algorithms are generally slow
and they do not provide unique solutions, as they amount to solve fourth degree polyno-
mial equations. Four points generally suffice for uniqueness [25] and there exists linear
methods in this case.

The most widely used and most accurate methods for solving pose estimation use it-
erative optimization methods. In these approaches, a cost function describing a pose error
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is computed and iteratively optimized.

In this section, we described algorithms for pose estimation. Their efficiency and ro-
bustness has been tested and the results are given in chapter6.

5.3.1 Direct Linear Transform

The Direct Linear Transform algorithm described in section3.3.3p34 for the recovery
of the entire camera matrixP can also be used for pose estimation only (that is, not
simultaneously with camera calibration). To this aim, the image points are first multiplied
by K−1 and the correspondencesK−1m ↔ M between corrected image points and world
points are used as input data for the algorithm. This pose estimation requires to know at
least 6 correspondences. As the method solve for each of the entries of the matrix[R|t],
the matrixR may not be orthogonal. It can however be enforced using the properties of
the Singular Value Decomposition [24].

5.3.2 The absolute orientation problem

Figure5.2shows the imaging process of a camera for a pointMi. This point is transformed
into the pointmi, whose coordinates in the camera coordinates system are(mix−x0, miy−
y0, f).

Mi

mi

c

li

f

Figure 5.2:Imaging process of a camera for one point
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In fact, every point of the raylimi/‖mi‖, li = 0...∞ will transform tomi. Onceli
is known, the coordinates ofMi are defined in the camera coordinate frame. When the
normalized vectormi/‖mi‖ is used,li is the camera-point distance. Now suppose the
correspondencesMi ↔ mi are known forn points and that for each correspondence,
the distanceli is known. We then have the coordinates of the pointsMi in the world
coordinates frame, and fromlimi/‖mi‖ we recover the coordinates of the pointsMi in
the camera coordinate frame. The pose estimation is then reduced to the problem of
finding the relationship between two coordinate systems using pairs of measurements of
the coordinates of points in both systems, referred to asabsolute orientation problem.

A closed-form solution for this problem can be found in [19] and [12]. In fact there
is a solution even if the points are scaled from one coordinate system to the other, that is,
if a similitude can be retrieved between the two sets of points. For better readability, we
denote byai the points in one coordinate system andbi the points in the other. Then we
have:

bi = sR(ai + t), i = 1...n

Summing these equations for alli and dividing byn shows that the optimal translation
is found via

t = s−1R>b0 − a0

whereb0 anda0 are the centroids of the two data sets. Combining this with our original
equation gives̃bi = sRãi, whereb̃i = bi − b0 andãi = ai − a0.

The rotation matrix does not change the lengths of the vectors, thus a scale s that
minimizes the symmetric error is given by:

s =

√√√√∑i ‖ãi‖2∑
i ‖b̃i‖2

Let B be the3 × n matrix formed by stacking the points̃bi side by side andA the
matrix formed by stacking the points̃ai similarly. The rotation matrix that minimizes the
sum of the square of the errors

∑
i ‖b̃i − sRãi‖2 is given by:

R = VU>

whereU andV are the left and right singular vectors of the SVDUSV> of the matrix
AB>.

This solves the absolute orientation problem. Following pose estimation focus then
only on retrieving the lengthsli

5.3.3 Object rigidity

With the notations of the last section, the rigidity of the world object can be expressed
in terms of the invariance of the inter-points distance. Indeed, the known distancedij =
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‖Mi − Mj‖ is the same in both coordinates frames, and thus gives a constraint on the
unknown camera-point distancesli andlj:

d2
ij = l2i + l2j − 2lilj cos θij (5.7)

whereθij is the angle between the two rays (see figure5.3).

Mi

Mj

mi
mj

li lj

dij

θij

c

Figure 5.3: Imaging process for two pointsThe lengths are related via the formula
d2

ij = l2i + l2j − 2lilj cos θij

The cosine of this angle is directly computed from the camera calibration matrix and
the pointsmi andmj as:

cos θij =
m>

i ωmj√
m>

i ωmi

√
m>

j ωmj

whereω = K−>K−1.
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Forn points, we haven(n−1)
2

quadric constraints type (5.7). Following algorithms are
different ways to solve these equations linearly by changing the variables.

Using resultants

One way to solve the equations of type (5.7) is to use resultants [25]. This classical
result allows to eliminate variables in polynomials. Equation (5.7) can be summarized
fij(li, lj) = 0. We now show how to recover the lengthl1. Considering the equations
involving l1, l2 and li, we can use classical Sylvester resultant to eliminateli between
f1i(l1, li) and f2i(l1, li) and get a polynomialh(l1, l2). Then, further elimination ofl2
betweenf12(l1, l2) andh(l1, l2) gives an 8th degree polynomial inl1 with only even terms,
i.e.a 4th degree polynomial inl = l21.

g(l) = a5l
4 + a4l

3 + a3l
2 + a2l + a1 = 0

what we can also writea>x = 0, with a = (a1, a2, a3, a4, a5)
> andx = (x0, x1, x2, x3, x4)

>

= (1, l, l2, l3, l4)>.
For n points, we haven(n−1)

2
quadric constraint of typefij(li, lj) = 0 and (n−1)(n−2)

2

4th degree polynomials of typea>x = 0 in one variablel = l21. Stacking together all these
equations results in the following matrix equation:

Ax = 0

where each row ofA is one of the vectorsa defined above.
Fromn = 5 on, there are sufficiently many 4th degree polynomials to linearly solve

this equation up to scale, generally with the SVD ofA [24].
In the special case of 4 points, the matrixA has dimension3 × 5 so that Ker(A) has

dimension 2. The SVD ofA leads to a base(v1, v2) of Ker(A), and there exists two real
factorsλ1 andλ2, so that

x = λ1v1 + λ2v2

We now consider the nonlinear constraints among the components ofx. It is clear that
for i + j = k + l, 0 ≤ i, j, k, l ≤ 4, we havexixj = xkxl. Up to 7 such relations can be
built, resulting in 7 homogeneous quadratic equations inλ1 andλ2 of type

b1λ
2
1 + b2λ1λ2 + b3λ

2
2 = 0

which can be written in a matrix form as:

B

 λ2
1

λ1λ2

λ2
2

 = By = 0
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Again, this is solved linearly for the variablesλ2
1, λ1λ2 andλ2

2 by SVD. This givesλ2
1

andλ2
1 up to scale, the scale being recovered from the equation involvingx0 = 1.

The finall is taken to bel = x1/x0 or l = x2/x1 or l = x3/x2 or l = x4/x3 or the
average of all these values. Sincel = l21, the final length isl1 =

√
l.

Two remarks are important to point out here. First, solving the equationAx = 0
may be problematic insofar as the variablesx0, ..., x4 have generally extremely different
weights. Indeed, they represents a length at orders of magnitude ranging from 0 forx0

to 4 for x4. This can cause the SVD ofA to have important errors and can be solved by
normalizing the matrixA before the SVD.

Second, oncel1 has been recovered, one can recover the otherli’s by using again the
properties of the resultants and back substituting the found value. This makes however
the whole solution extremely dependent on only the two first points. Solving for eachli
in the same manner as forl1 will on the contrary split the errors over the points. If the
computation time is not critical, this solution should therefore be considered. Note that
this method involves matrices with complicated coefficients extracted from 4th degree
polynomials, and its implementation is somewhat cumbersome [31].

Linear system from quadratic constraints

Ansar and Daniilidis [2] solved these equations for the variableslij = lilj. With ρ = 1,
equation (5.7) is rewritten as:

ρd2
ij = lii + ljj − 2lij cos θij

Since lij = lji, this is an homogeneous linear system in then(n+1)
2

+ 1 variables
{ρ, lij, 1 ≤ i ≤ j ≤ n}, which can be written as:

Al = 0

with l = (l11, l12, ..., lnn, ρ)>. In this case, Ker(A) has dimensionn + 1, and the solution
is a linear combination of then+1 vectorsvi of the basis of Ker(A), easily obtained from
the SVD ofA [24]: 

l11
l12
...

lnn

ρ

 =
n+1∑
i=1

λivi (5.8)

The idea is then to solve for theλi by reimposing the quadratic nature of the original
problem: observing that for any integersa, b, c, d and any permutationa′, b′, c′, d′ we have
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lablcd = la′b′lc′d′, we can substitute individual rows of equation (5.8) into such relations,
which results in quadratic homogeneous constraints on theλi.

n+1∑
p=1

λ2
p(v

ab
p vcd

p − va′b′

p vc′d′

p ) +
n+1∑
p=1

n+1∑
q=p+1

λpλq(vab
p vcd

q − va′b′

p vc′d′

q + vab
q vcd

p − va′b′

q vc′d′

p ) = 0

wherevab
p refers to the row ofvp corresponding to the variablelab in l.

Again, this system can be expressed linearly for the(n+1)(n+2)
2

new variablesλij =
λiλj as:

Bλ = 0

with λ = (λ11, ..., λn+1,n+1)
>. In this case however, Ker(B) is one dimensional, andλ

is recovered up to scale. The scale factor is found by imposingρ = 1. Once theλi are
known, we can computel with (5.8) and obtainli as

√
lii.

As discussed in later sections, this algorithm gives very good results, and a good
robustness to noise. However, it is computationally intensive, as it requires the building
and SVD of then(n−1)

2
× (n(n+1)

2
+ 1) matrix A and(n2(n−1)

2
)× ( (n+1)(n+2)

2
) matrix B. It

can be used even with 4 points.

5.3.4 Using weight matrices

Fiore [12] gives an interesting way to solve for the lengthsli linearly. We first define the
data matrix as:

D =

[
M1 ... Mn

1 ... 1

]
Assuming thatD has rank 4, andD = USV> being the SVD ofD, we call weight matrix
W then× (n−4) matrix of the singular vectors (columns ofV) corresponding to the null
space ofD. As each column ofW is in the null space ofD we have for allj:

n∑
i=1

wijMi = 0

and:
n∑

i=1

wij = 0

As the columns ofW are orthonormal, we have also:
n∑

i=1

w2
ij = 0

We then use linear combinations of the correspondence equations

li
mi

‖mi‖
= RMi + t
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For thejth combination, we use thejth column ofW. Thus we have:∑n
i=1 wijli

mi

‖mi‖ =
∑n

i=1 wij(RMi + t)
= R

∑n
i=1 wijMi + t

∑n
i=1 wij

= R0 + t.0
= 0

This can be written in a matrix form as:

Al = 0

SinceA have dimensions3(n−4)×n, this is sufficient to solve with a classical SVD,
for n ≥ 6 [24]. However, noting that every third row ofA is in fact a scaled column ofW
forcesl to be in the left null space ofW, which is spanned byD>. We therefore have that

l = D>α

for an unknown4× 1 vectorα and we can rewrite the equation:

Bα = AD>α = 0

The matrixB has2(n−4) nonzero rows and 4 columns, so that a minimum of 6 points
is also required with this method. The advantage is that the SVD computation is faster
with the smaller matrixB, especially for a largen.

If the points are coplanar (and only in this case), the rank ofD will be less than 4. In
this case, a similar method to solve forn ≥ 4 points can be found in [12].

5.3.5 Iterative algorithms

Iterative algorithm for pose estimation usually define error functions reflecting the dis-
tance from the correct solution, and optimize these functions by an iterative process. We
will here briefly describe the algorithms that have been tested.

Image space error

This method tends to minimize thereprojection errorover the parametersR andt, defined
as the sum of the squares of the distances between an image point and its corresponding
reprojected world point usingR and t. As shown in figure5.4, if m′

i is the reprojected
pointK(RMi + t) scaled so that itsz-element is 1, the error is:

e(R, t) =
n∑

i=1

‖mi −m′
i‖2
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Mi

mi

c

real pose

reprojected point

ei

Ei

mi'

estimated pose

Mi'

Figure 5.4:Image error and world error When an estimation of the pose is known, the
points may be reprojected in the image. The image distance between the original point
and the reprojected point is the image errorei. The orthogonal distance from the obtained
ray and the original world point is the world errorEi.

The rotation matrix is usually parameterized using Euler angles. Then an optimization
algorithm such as the Levenberg-Macquardt method is used.

The major drawback of this method is that a good initial approximate must be given
to ensure convergence. It is therefore often used for optimizing after having applied a first
linear method.

Object space error

Lu, Hager and Mjolsness give in [21] an iterative algorithm which minimizes the object
space error (see figure5.4). When the image points are normalized by pre-multiplying by
K−1, this error is:

E(R, t) =
n∑

i=1

‖(I − Vi)(RMi + t)‖2

whereVi is the observed line-of-sight projection matrix defined as:

Vi =
mim>

i

m>
i mi
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This problem is analytically similar to an absolute orientation problem, where the im-
age points would depend onR. The idea is then to solve it as the absolute orientation
problem, but iteratively: at stepk, R(k) is used to compute the fictive image points, and
the absolute orientation algorithm is applied to findR(k+1). More precisions can be found
in [21].

Lu et al̇have shown that this iterative process is globally convergent. However, con-
vergence does not implies finding the solution but a fixed point. There is therefore again
a need of good initial values forR and t. These initial values can be obtained from the
weak perspective model explained in next section.

POSIT

The algorithm POSIT, developed by DeMenthon and Davis use the scaled orthographic
projection model [8], or weak-perspective model. In this model, the world points undergo
a first orthographic projection along the camera axis on a plane with depths, calledprin-
ciple depth, and then a perspective projection on the image plane. In the figure5.5, the
principle depth is chosen to be the depthZ0 of the first pointM0.

H
Of

Z0

C

z

y

x

k

i
j M0

Mi

m0

mi

Pi

image plane plane z = Z0

Figure 5.5:Scaled orthographic projection modelWith a principle depthZ0, a pointMi

is first orthographically projected on the plane of equationz = Z0 and then perspectively
projected on the image plane.

With the notations of the figure, one can geometrically show the following results:

M0Mi.I = xi(1 + εi)− x0 (5.9)
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M0Mi.J = yi(1 + εi)− y0 (5.10)

with (xi, yi, f) the coordinates ofmi relative to the camera center, and:

I =
f

Z0

i, J =
f

Z0

j (5.11)

εi =
1

Z0

M0Mi.k (5.12)

In a first algorithm, Pose from Orthography and Scaling (POS), values are given to
the εi’s in equations (5.9) and (5.10), resulting in linear equations in the elements ofI
andJ. Solving these equations and normalizingI andJ leads toi and j, which are the
two first rows of the rotation matrixR, and toZ0, which in turn givest. The third row
of R is obtained fromk = i × j. When allεi’s are zero, the classical weak perspective
approximation is made.

The iterative algorithm POSIT (POS with ITerations) takesεi = 0 as initial values and
POS is applied. At each step, a pose is found, which permits to compute newεi’s with
equation (5.12). Iterations stop when theεi’s stay unchanged.

POSIT has the advantages that it does not require an initial pose estimate, its code
is very compact, and its computation time is significantly reduced in relation to other
classical algorithms.

5.4 Summary

The pose of the camera can be estimated in different ways in a single view. Planar methods
use the homographies between a planes and their images. The known planar method for
one plane has been extended to two multiple planes algorithms, considering respectively
the cases of known and unknown equations of the planes. A vanishing point pose esti-
mation has also been detailed. The special case of known 2D/3D points correspondences,
has been discussed through the derivation of 7 dedicated methods. The implementation
and tests of these different algorithms are detailed in the next chapter.



Chapter 6

Implementation and results

After the theoretical approach discussed in chapters4 and5, this chapter covers the prac-
tical aspects of the work. The implementation and its particularities are first outlined, then
results of comparative tests are discussed.

6.1 A calibration toolkit

6.1.1 Presentation

In order to test and compare the different algorithms, a software was necessary. The preex-
isting softwareMAXCALallowed for viewing images, drawing points, selecting viewers
and points. This application was written inC++ , usingTrolltech’s QtandOpenGLfor
the Graphical User Interface. In this work, this software has been upgraded to eventually
become a complete calibration toolkit mainly dedicated to single views.

6.1.2 Features

An original version ofMAXCAL was already available. This earlier application was
mainly a multiple image viewer, with the possibilities to load images into separate view-
ers. Once a viewer has been selected, the user could augment the image with points by
clicking on the image. The coordinates of the points in the image are stored in a file, along
with their 3D coordinates given as an input (for correspondence algorithms). Here is an
overview of what have been added to this first version. Figure6.1shows a window of the
software.

74
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Figure 6.1:The calibration toolkit MAXCAL

Draw toolbar

The draw toolbar now allows for drawing points, lines and polygons. These objects can
be easily deleted and replaced with the selection tool. Another feature is the possibility to
join points or lines in a specific group. For example, parallel lines are grouped together to
find the corresponding vanishing point. Figure6.2shows the draw toolbar.

Algorithm toolbar

The different algorithms are represented as buttons in a toolbar. Only one algorithm can
be selected at a time, and whenever an object is moved, the current algorithm is applied,
enabling a first estimation of the noise robustness. Figure6.2shows the algorithm toolbar.
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Other features

MAXCALalso includes other features like a radial distortion remover, a toolbar for the
vanishing point detection method, and a mosaicing tool, which allows to merge two im-
ages with corresponding points. These features are grouped in a main toolbar, as seen in
figure6.2.

(a)

(b)

(c)

Figure 6.2:MAXCAL toolbars (a) Main toolbar (b) Draw toolbar (c) Algorithm toolbar.

Image augmentation

As explained in the introduction, one of the goals of the study is to augment the image
with virtual objects. The work however focused on the calibration algorithms, and image
augmentation was only an aside to confirm the correctness of the algorithms. That is why
the augmentation mainly consisted of a wired box drawn withOpenGL. This box is placed
on the plane of equationz = 0, and can be moved along thex- andy-axis with the arrow
keys. Such a box is represented in figure6.3. The coordinate system was also represented
by a red, a green and a blue line, for thex-, y-, andz-axis respectively.

6.2 Implementation particularities

This section discusses the implementation particularities of the algorithms described in
chapters4 and5. Some of the recurrent problems are outlined as well as issues specific
to each algorithm.
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(a) (b)

(c) (d)

Figure 6.3:Wired box image augmentationThe box can be moved in the image

6.2.1 Radial distortion

The algorithm presented in section3.2p29has been implemented so that the user just has
to draw sets of points which should be aligned in the image. Then the points correspond-
ing to the same line are grouped together via the group button. The algorithm uses a non
linear optimization technique to find the parameterk1 and the center of radial distortion
c. As initial parameters, we takek1 = 0 andc in the middle of the image.

While k1 correctly converges towards its true value, the centerc seems not to move.
This has no effect in the most common case where the center of radial distortion actually
is the center of the image. That is why this algorithm usually gives good results. However,
in some cases, the center of radial distortion can lie at another place in the image. This is
mostly the case when the image has been cut and recentered. The iterative optimization
algorithm then stops in a local minimum withc in the middle of the image. Although this
algorithm has been improved by the possibility to specify the initial position of the center
of distortion, there is still no convergence of the center of distortion.

Once the parameters are recovered, the image is corrected. For each pixel of the
corrected image, the distorded coordinates are computed, and the color values are taken
as an interpolation of the neighbor pixels in the original distorded image. This correction
requires to solve a third degree polynomial for each pixel and is quite slow.
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6.2.2 Autocalibration in panoramas

To construct the panorama, the user can open several images inMAXCALsimultaneously,
and then click on the images to give the position of the features points to be matched.
Corresponding points must have the same index number on each image representing it.

The algorithms presented in section4.3.2p53are efficient but demand a good look at
the constraints imposed for a correct use. Indeed, the correct construction of a panorama,
and thus the recovery of the correct homographies, depend on the relative position of the
camera for each view. Theoretically, the camera must be rotating around its center. This
is a hard constraint, because even if the camera is fixed to a tripod, the rotation is not
necessary around the center of projection, which is not a physical point.

Another difficulty is the fact that the corresponding points on the image are drawn by
the user, which can lead to incorrectness. When the images have a reduced overlapping
area, the number of points is limited, and the homography can be imprecise. Figure6.4
shows the resulting panorama of two views with reduced overlapping area.

Figure 6.4:Imprecise panorama buildingWhen the overlapping area is small, the com-
puted homography may be incorrect, and so the resulting panorama.

Table3.1 p39 shows that the image of the absolute conicω and its dualω∗ do not
play the same role in calibration when assumptions are made. However, even when the
resulting number of parameters is the same forω andω∗, both equations (4.24p54) and
(4.23p54) can be used in this algorithm, one being the inverse of the other. The results
of tests have shown that the found matricesK are not the same when using one or the
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other equation. The reason is probably the fact that the SVD solution (that is the least
squared error solution) is not the same in either case. An error analysis could help to
chose between the two options.

6.2.3 Numerical conditioning for homographies

The method for computing an homography from 4 or more point correspondences is de-
tailed in appendixA.1. However, this method includes a Single Value Decomposition, and
the result of the algorithm depends on the coordinate frame in which points are expressed.
The usual coordinate frame is not the best for computing an accurate homography. That
is why a data normalization prior to the algorithm is often made. This normalization is
known asnumerical conditioning, and has the benefits to improve the accuracy of the re-
sult and to make the algorithm invariant to arbitrary choice of scale and coordinate origin.

As a first step, the coordinates in the first image are translated so as to bring the cen-
troid of the set of points to the origin. The coordinates are then scaled so that the average
point distance to the origin is

√
2. This transformation for the first image is applied using

a transformation matrixT (transformation plus scaling), and we notex̃i = Txi the trans-
formed point. Similarly, the pointsx′i of the second image are also transformed using the
matrix T′ such that the centroid of the transformed pointsx̃′i is the coordinate origin and
their average distance from the origin is

√
2.

The usual algorithm of appendixA.1 is then applied to the correspondencesx̃i ↔ x̃′i
to find an homographỹH.

The denormalization step sets thenH = T′−1H̃T . Hartley and Zisserman show in [17]
that data normalization gives much better results, so thatit should not be considered op-
tional. A special button inMAXCALenables the user to switch the numerical conditioning
on or off.

6.2.4 SVD normalizing

The Singular Value Decomposition (SVD) of a matrix is well known and an explanation
can be found in [24]. It is particularly useful for solving equations of the form:

Ax = 0

whereA is am×n matrix of rank(n−1) andx then-dimensional vector of the unknowns.
In this case the solution is one-dimensional, and with the SVDA = USV>, one

solution is the column ofV corresponding to the smallest singular value inS. In fact,
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each row ofA leads to one linear equation in the unknowns ofx, and the SVD solution is
proven to be the solution that minimizes the sum of the squared errors:

E =
m∑

i=1

(ai>
x)2

whereai> is theith row of A. According to this, one can normalize the matrixA prior to
the SVD computation to improve the accuracy of the results. The two possible normal-
izations are

• Row normalization The equations of typeai>x = 0 have the same solutions if
the vectorai is multiplied by a scale factor. If the rowsai> of A are normalized so
that ‖ai‖ = 1, the system of linear equations will remain algebraically the same,
but the errors valuesai>x will be equally weighted. In this case, the SVD solution
will consider eachequationwith the same importance.

• Column normalization If the variables inx have different orders of magnitude,
the equations involving essentially small variables will generally be neglected in
relation to the equation with large ones. This is generally seen in the matrixA,
where columns corresponding to small variables usually contains large coefficients
(making the equation somewhat homogeneous). To prevent this, one can normalize
the columnsai of A, so that the coefficients are homogenized. The equations system
does not remain the same in this case, since we then work with new variables. The
new variables actually are the old ones scaled with the scale factor used for the
corresponding column normalization. The SVD solution will then consider each
unknownwith the same importance. When a solution has been found, the variables
are rescaled to find the solution to the original problem.

The two normalization techniques for SVD presented here can be used separately or
together. In some cases, this is an essential step to obtain a realistic solution, as seen in
section6.2.6.

6.2.5 Algorithms for calibration and pose

The implementation of the calibration and pose estimation algorithms mainly involves
user interaction. The user is asked to draw points, lines and possibly to group them to
indicatee.g.parallelism. Then a specific button launches the algorithm and the result is
immediately seen as a wired box image augmentation.

Vanishing points

To find a vanishing point, the main method is the intersection of parallel lines. The user
has the to draw all the parallel lines he/she sees in the image (even if the lines are not
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coplanar). The more lines, the better the accuracy. The parallel lines are then grouped
together using the group tool. This is applied for the calibration with two or three van-
ishing points, as well as for the pose estimation from three orthogonal vanishing points.
A specific toolbar has also been created to test the different line intersection algorithms:
given a set of lines, the estimated intersection point is drawn once a button is pressed.

Drawing a rectangle

For the one-plane calibration and pose estimation algorithms, a rectangle can be drawn
with lines or with a polygon. Alternatively, the user can give two perpendicular sets of
parallel lines to specify the directions of the rectangle and then only draw two opposite
corners of the rectangle, as seen in figure6.5.

(a) (b)

(c)

Figure 6.5:Drawing a rectangle Different methods to draw the rectangle (a) lines (b)
polygon (c) groups of parallel lines and two opposite corners

Additional information

In some cases, additional information is needed by the algorithms. For example, the meth-
ods involving a world-to-image plane homography need the points coordinates in some
local coordinate frame (this is the case for the one- and multiple-plane-based algorithms).
All the algorithms based on 2D/3D correspondences also need extra information. To this
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aim, once the points are drawn and indexed, the coordinates of the points in a world co-
ordinate system can be specified. This information is stored in a file and loaded with the
image if already existing. This file also stores the camera calibration data, for the cases
where only the pose is estimated.

For the multiple planes algorithms, the equation of the planes can be specified or not.
In the former case, the coordinates of the points in the 3D world are given in a global
coordinate system, and a pre-computation determines for each point its belonging plane.
In the latter case, points are considered in a local coordinate frame withz = 0. Then only
thex- andy-values are entered. To specify the belonging plane, we simply use thez-value
as an integer index: points with coordinates(x, y, i) belong to the planei, but have real
local coordinates(x, y, 0).

6.2.6 2D/3D pose estimation

The usage of the correspondence pose estimation algorithms is very simple and follows
the process for additional information explained above. However, the implementation of
some of them raised specific problems which are discussed in this section.

Resultants

The algorithm presented by Quan and Lan detailed in section5.3.3p67builds up a linear
system of equations in the variables(1, l, l2, l3, l4), wherel is the squared distance from
the camera center to the first point. These unknowns have obviously different order of
magnitude, and the problem discussed in section6.2.4was particulary important here.
Without an SVD normalization, the value for the unknown would generally not respect
the quadric constraint (the foundl2 was not the square ofl, and so on). Computingl in
the different waysl = l4/l3, l = l3/l2, l = l2/l, andl = l/1 gave different values with
50 to 100% error between them. With an SVD normalization of the columns, this error
reduced to less than0.1%.

In the original paper, Quan and Lan only gives the method to find the first camera-
to-point distancel1, suggesting that the same could be done for the other points. Triggs
gives however an implementation where the next distances are deduced from the first
one, using the already made resultants computation. In this case, the whole solution is
extremely dependant on the first two points, leading to bad results. That is the reason why
the tests have been made with the same method for each point.
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Linear system from quadratic constraints

Ansar and Daniilidis gave another solution for the same problem, by solving linear equa-
tion in quadratic combinations of the length (see section5.3.3p68). The results showed
that this solution was very robust and accurate. However, it is important to note that this
algorithm has a long computation time, since it is certainly linear, but inn2 variables, and
involves the computation and SVD ofn3 × n2 matrices. It must therefore be known that
this algorithm can only be used when time is not critical.

Iterative object-space-error optimization

Lu, Hager and Mjolsness presented an iterative algorithm that minimizes the object space
error, as described in section5.3.5p71. They also gave a proof of global convergence for
the algorithm. The major drawback is however that the suggested initial value found using
the weak perspective model does not always converge towards to right solution. Instead,
the pose parameters seems to converge in another local minimum. For the tests, the initial
parameters where chosen as the result of less precise linear algorithms like DLT.

6.3 Tests and results

Once the algorithms had been implemented, several tests have been realized. For some
algorithms, the immediate visible results was sufficient, but others demanded a deepest
look and elaborated tests. In this section, these tests are described and their results are
shown and commented.

6.3.1 Calibration from panoramas

The panorama-based calibration method was tested by constructing a panorama from syn-
thetic images. Thus, the calibration matrixK is known in advance and can be compared
to the results of the algorithms. The movements of the camera consist in pure rotation
with different axis. Three sets of images have been tested: the Venice view (VEN), the
Bridge (BRI ) and the Towers (TOW ), each with a different focal length. The images have
the size1024 × 768, so that the real principal point has coordinates(512, 384). The test
images are shown in figure6.6.

In the case of panoramas, we have a set of 3 synthetic images where the view differs
only by a rotation. From image-to-image points correspondences we can first reconstruct
the panorama, and then use the computed homographies to apply the algorithm. As ex-
plained in section4.3.2p53, there are many ways to recover the matrixK. Here four
of them are considered. The two first compute the complete matricesω, andω∗. An-
other make use of the zero-skew and square pixels assumptions for the IAC, leading to a
3-parameter matrix̃ω. The last one only calculates the focal lengthf , as it furthermore
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(a)

(b)

(c)

Figure 6.6:Synthetic images for the panorama-based calibration(a) The Venice view
(b) the Bridge (c) the Towers. In each set, the different poses of the camera only differ by
a rotation.
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Set Ground TruthK K with ω K with ω∗ K with ω̃ f

fx = 1128.69 fx = 1121.65 fx = 1062.20
fy = 1128.69 fy = 1129.96 fy = 1015.63 f = 1124.20 f = 1110.52

VEN x0 = 512 x0 = 513.39 x0 = 389.51 x0 = 525.84
y0 = 384 y0 = 373.41 y0 = 321.38 y0 = 380.57
s = 0 s = −9.94 s = 79.01

fx = 1228.79 fx = 1258.74 fx = 1403.91
fy = 1228.79 fy = 1258.85 fy = 1491.37 f = 1255.40 f = 1256.12

BRI x0 = 512 x0 = 524.19 x0 = 735.67 x0 = 491.39
y0 = 384 y0 = 398.61 y0 = 422.91 y0 = 361.18
s = 0 s = 47.16 s = 79.01

fx = 1638.40 fx = 1637.20 fx = 1423.22
fy = 1638.40 fy = 1623.86 fy = 1365.71 f = 1637.23 f = 1632.06

TOW x0 = 512 x0 = 512.49 x0 = 288.81 x0 = 516.47
y0 = 384 y0 = 348.71 y0 = 279.50 y0 = 358.08
s = 0 s = −11.65 s = 6.2013

Table 6.1: Results of the panorama-calibrationEach row represents a set of images
(VEN: the Venice view, BRI: the Bridge, TOW: the Towers). The 3nd and 4rd columns
presents the results for the entire matricesω andω∗. In column 5,ω̃ assumes zero skew
and squares pixels, while in column 6, the principal point is also known, and onlyf is
computed. The 2nd column shows the correct values forK.

assumes the principal point at the center of the image.

About 30 points were manually marked on each image for the computation of the ho-
mographies. The result depends on the accuracy with which these points are marked, but
gives an idea of what can be achieved by the algorithm. Results are summarized in table
6.1.

For the three sets of images, the results are better forω thanω∗. The first method
solves for a matrix equation, and the second solves for its exact inverse. This shows that
in the second case, the numerical values are unstable (in particular in the computation of
the SVD), and the first one should be chosen for this algorithm. The values found forω
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have very little errors. In particular the focal length is retrieved with less than3% error.
The found principal point is also very accurate, with at most9% error. However, the val-
ues found for the skew are unrealistic. An interesting point is that when assumptions are
made, the values do not change much. A good compromise seems to compute the matrix
K for the entire matrixω, and to set thens = 0.

Two remarks are worth noting here. First, the chosen views have a large overlapping
surface, so that correspondence points are very easy to find. In an usual set of images
taken for a panorama, images may have much less overlapping. Second, a lot of points
correspondences are necessary to obtain correct results. When testing with only 10 points,
the homography could not be correctly found and the values were very unrealistic. As a
conclusion, this algorithm gives very good results if the images are taken with this aim in
mind. An automatic extraction of the points of interest and a robust matching algorithm
(e.g.RANSAC, see [13]) could be added to reduce the user interaction.

6.3.2 Calibration from vanishing points

The test of vanishing points calibration does not differ much from the plane-based calibra-
tion explained above. In this case, vanishing points are detected by selecting parallel lines
in the same images. Once the vanishing points are known, one can apply the algorithm to
find the focal length (2 vanishing points) and the principal point (3 orthogonal vanishing
points), and compare them to the real values. Results are shown in table6.2.

The vanishing point technique also give reasonable results with a maximal error of5%
for the focal length. Again, the error for the principal point is less than9%. This methods
proves to give good results when the principal points are easy to find. In particular, when
parallel lines converge rapidly to their intersection point, the noise effect is reduced (as in
the test images). In other images, this is not applicable, as no straight lines are visible.

6.3.3 Plane-based calibration

To compute the homographies, we need known planar pattern in the image. Figure6.7
shows a real image with a known planar pattern taped up on three planes. The focal length
is not known in advance, but we can compare the values obtained from the vanishing point
and the planar method. 12 points were used for each plane (see table6.3).

The comparison shows that the focal length is correct with the multiple plane method,
in particular when the square pixels assumption is made. However, the principal point
coordinate differs from one method to the other. Note that the image was a real photo-
graph and may have a principal point that is not at the center of the image. Other tests
showed that the focal length has much more importance than the principal point in image
augmentation, so that the center of the image can be taken instead of the found values.
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Set Ground TruthK K with 3 VP K with 2 VP

fx = 1128.69
fy = 1128.69 f = 1189.12 f = 1113.87

VEN x0 = 512 x0 = 524.05
y0 = 384 y0 = 352.09
s = 0

fx = 1228.79
fy = 1228.79 f = 1237.10 f = 1243.75

BRI x0 = 512 x0 = 498.55
y0 = 384 y0 = 381.75
s = 0

fx = 1638.40
fy = 1638.40 f = 1585.30 f = 1616.10

TOW x0 = 512 x0 = 501.82
y0 = 384 y0 = 373.34
s = 0

Table 6.2:Results of the vanishing points calibrationThe 3rd and 4th columns present
the results for the cases of 3 and 2 orthogonal vanishing points respectively.

K with 3 VP K1 with planes K2 with planes

fx = 829.75
f = 848.57 fy = 877.50 f = 841.46
x0 = 326.54 x0 = 249.94 x0 = 254.62
y0 = 227.30 y0 = 348.77 y0 = 329.77

s = −20.68

Table 6.3: Results of the multiple plane calibration The multiple plane calibration
without assumptions (column 2) and with zero skew and squares pixels (column 3) is
compared to the vanishing points method.



CHAPTER 6. IMPLEMENTATION AND RESULTS 88

Figure 6.7:Multiple plane calibration 12 points define a planar homography. Parallel
lines used for vanishing points detection are marked in color.

6.3.4 One plane pose estimation

Pose estimation algorithms for one plane imply computing a plane-to-image homography.
When the number of points is reduced (4 is a minimum), the homography will be very
dependent on the noise of that points, and the pose will be false. Furthermore, if the
reprojection error is acceptable on the considered plane, it will generally increase with
the distance of the 3D point to that plane. We can fortunately go around this problem in
two different ways.

Homography from more points

The homography is generally more accurate if more 2D/2D correspondences are taken
into account. Tho this aim, the user can provide more points with known coordinates on
the plane (see figure6.8), or an efficient automatic feature extraction followed by a robust
matching algorithm can be used. Such a robust estimator is the random sample consensus
(RANSAC) from Fisher and Bolles [13].

Manual pose adaptation

In the case of pose estimation with a rectangle, when the rectangle is drawn manually,
the first pose estimation is generally incorrect. The main problem is that thez-axis does
not seem perpendicular to the rectangle’s plane. A solution can be to manually move the
corners while applying the algorithm for each new position. When thez-axis is vertical,
a correct pose is found. This is useful for applications where the exact pose must not be
known, and where a visually correct augmentation is needed.
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(a) (b)

Figure 6.8:Homography computation accuracy(a) When using only 4 points, the ho-
mography is not accurate and the resulting pose is false. (b) More points (here 49) provide
a better accuracy in both homography and pose estimation.

6.3.5 Multiple planes pose estimation

In the case of multiple planes, a minimum of 8 2D/3D points correspondences are needed
to compute the homographies (a minimum of 4 for each of the homographies and at least
2 homographies). If the equations of the planes are known, the multiple plane algorithm
with equations allows to find a good compromise between the solutions for each plane
separately. However, this algorithm also has the problem of homography computation,
which needs more than the minimum of 4 points to be accurate. Taking 3 planes and 6
points for each plane implies knowing 18 points correspondences. In this case, a simple
DLT algorithm proves to give better results.

When the equations of the planes are not known, however, one can use the same plane
pattern of markers for each plane. This can easily be done with a printed pattern which
is attached to the planes of the scene . Then the local world coordinates of the markers
are the same for each plane, and minimum information is required. Figure6.9shows the
result of a calibration obtained in this manner.

6.3.6 Pose estimation from vanishing points

The algorithm presented in section5.2 p62 has good visual results when the vanishing
points are correctly computed. The major problem which can arise is the fact that 3 or-
thogonal vanishing points are needed. In most of the images, there is no problem to find
2 orthogonal vanishing points (using a regular tiled floor, for example), but the third van-
ishing point is more difficult to find. In particular, when the camera is hold parallel to
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Figure 6.9:Multiple planes pose estimation without equations of the planes

the ground, vertical planes will be perpendicular to the camera principal axis, and vertical
lines will remain parallel. That is why the user should be aware of the fact that the picture
has to be taken in such a way, that no set of parallel lines is perpendicular to the principal
axis. This is mostly the case when pointing the camera toward a corner of a room or a
building.

The advantage of this algorithm mainly consist of the minimal information needed
about the 3D world. Parallel lines just have to be recognized, and their exact position has
not to be known.

6.3.7 Pose estimation from 2D/3D correspondences

In the chapter5, seven algorithms for pose estimation based on correspondences between
world points and imaged points have been derived. Insofar as they all take the same input
(a number of correspondences), it is interesting to see how accurate is the result and in
which cases some algorithms are better than others. To this aim, Monte-Carlo simulations
have been conducted as following.
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The calibration and pose of a real image are used. In this case, the values were:

R =

 −0.5931 0.8049 −0.0167
0.2190 0.1413 −0.9654
−0.7747 −0.5763 −0.2601


t =

(
−14.1343 10.1104 114.8236

)>

and:

K =

 796.099 0 421.584
0 796.099 318.655
0 0 1


Then, the positions ofn pointsMi in the 3D world are given arbitrarily, so that they

are seen in the image. From these positions, the imaged points are computed usingK, R
andt.

mi ∼ K(RMi + t)

We then have the perfect correspondencesmi ↔ Mi. We then make 100 trials with
each imaged point subject to a constant Gaussian noise with known standard deviation.
Each time we consider the found pose for each algorithmR̃ and t̃, and measure the error
asFnorm(̃R>R− I ) for the rotation, whereFnorm is the Frobenius norm, and‖̃t − t‖
for the translation. The points are also reprojected using the found pose and the reprojec-
tion error is measured. After 100 trials we take the mean error for each algorithm and a
constant Gaussian noise. We repeat this process for Gaussian noises ranging from 0 to 10
pixels, with a 0.5 pixel step. We can then plot the function giving the mean error against
noise level for each algorithm, and thus efficiently compare the different algorithms. The
points are placed in a general configuration. Note that since the configuration of the points
is fixed, this only allows for a comparison between algorithms and not for an overall eval-
uation of a particular algorithm, which would involve tests for many random positions of
points.

The results are of particular interest for a limited number of points, since a large
number of points can be handled by an usual DLT method. The results forn = 4, 5 and6
points are shown in figures6.10to 6.13.

Figure6.10shows the errors for an increasing noise level in the case of a first set of 4
non coplanar points. The first remark is the inferiority of the algorithm of Quan and Lan
(Quan-Lan ) relative to the others. In fact, this algorithm presented serious numerical
problems discussed in section6.2.6. Even if the method with an entire computation for
each length has been implemented, the numerical unstability was not completely removed.

The two iterative algorithms (Lu, Hager and Mjolsness (Lu-Hager) and Non Linear
Least Squares (NLLS )) give exactly the same results, assumed to be the best reachable
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Figure 6.10:Pose estimation errors for 4 points correspondences (a)Rotation error
(top), translation error (middle) and reprojection error (bottom)
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Figure 6.11:Pose estimation errors for 4 points correspondences (b)Rotation error
(top), translation error (middle) and reprojection error (bottom)
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Figure 6.12:Pose estimation errors for 5 points correspondencesRotation error (top),
translation error (middle) and reprojection error (bottom)
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Figure 6.13:Pose estimation errors for 6 points correspondencesRotation error (top),
translation error (middle and reprojection error (bottom)
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solution, and given as a reference for the linear algorithms. It is interesting to see that
the algorithm of DeMenthon and Davis (POSIT) and the one from Ansar and Daniilidis
(Daniilidis ) have similar results, and are very close to the best iterative solution. (Note
that POSIT is also an iterative algorithm, but its convergence is very fast and it can be
compared to the linear algorithms). In terms of reprojection error, Daniilidis give better
results.

In figure6.11, another set of 4 points is considered. While Quan-Lan remains unnsta-
ble, POSIT still gives good results. Daniilidis however rapidly diverges. This example
shows the dependence of Daniilidis to the configuration of points, especially in the mini-
mal case of 4 points.

The case of 5 correspondences is studied in figure6.12. Again Daniilidis and POSIT
have similar results for the rotation and translation errors. For the reprojection error, Dani-
ilidis has better results, similar to the interative algorithms.

From 6 points on, more algorithms can be applied. in addition to the precedent ones,
the algorithm of Fiore (Fiore) and the classical direct linear transform (DLT ) are plotted.
We first see that DLT has particular bad results. In this algorithm, the orthogonality of the
rotation matrix is not enforced, and in the tests, a further step replaced the found matrix
R by the nearest orthogonal one in the sense of the Frobenius norm, which explains the
large reprojection error. We can also see that Quan-Lan has now more stability, with re-
sults comparable to Fiore. In this case again, Daniilidis have excellent results, especially
in the reprojection error.

All the algorithms tested here have not the same computation time. Although Dani-
ilidis is said linear, it has the longest computation time, so that it can not be used for real
time applications. Quan-Lan, Fiore and POSIT are on the contrary fast enough for real
time. In an augmented reality application, the reprojection error has the more importance,
as virtual objects are reprojected in the real scene. These three algorithms have compa-
rable results in terms of reprojection. As a conclusion, when the time is crucial, POSIT
is recommended as a fast and exact algorithm, in terms of reprojection error as well as
pose accuracy. When time is no matter, Daniilidis is indicated as it gives the best results,
except when only 4 points are detected, in which case POSIT provides more stability.
Note however that POSIT is not globally convergent, as it is based on a weak perspective
model. When the points are placed on the periphery of the image, POSIT can fail, and
Fiore or Quan-Lan should be used.
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6.4 Summary

All the algorithms presented in this report have been implemented into the calibration
toolkit MAXCAL . The principal implementation specificities have been discussed, and
the algorithms evaluation with comparative tests has been detailed. In particular, the
correspondences-based pose estimation is handled by algorithms with different time cost
and efficiency and the choice of the indicated algorithm has been thoroughly discussed.
In general, the different presented methods have their own advantages, and a good com-
prehension of the way they operate is helpful for choosing the right algorithm for the right
case.



Chapter 7

Conclusion

In this report, techniques for integration of virtual objects into a single view have been
presented. The case of single views is flexible for augmented reality, insofar as it does not
require several cameras nor to move an unique camera. To correctly insert objects into
a single image, it is important to first study the geometrical properties of the image, and
then to use them correctly in a number of tasks, namely the camera internal calibration,
the pose estimation and the image augmentation itself.

Calibration and pose algorithms for single views are essentially based on geometric
particularities of the image. Thus, the first part of this work consists in an extensive anal-
ysis of the single view geometry. Four geometrical levels and corresponding transforma-
tions have been studied in detail: Projective geometry, affine geometry, metric geometry
and Euclidean geometry. Each level is also defined as a set of invariant properties and
invariant geometrical objects. These properties and objects are explicitly used in many
algorithms presented throughout this report.

A brief overview of the camera model has defined the two main tasks of objects inte-
gration. First, the camera has to be calibrated. The problem is the recovery of the internal
parameters of the camera (mainly the focal length and the principal point of the camera),
which build the camera calibration matrixK. Second, the pose of the camera relative to a
world coordinate system must be estimated. This pose decomposes into a rotation matrix
R and a translation vectort. Real images can however be subject to radial distortion, in
which case they will not fit the model. A possible radial distortion can be first removed
using a correction algorithm, also provided in the report.

Single view camera calibration presented in chapter4 mainly consists in three ap-
proaches: a plane-based calibration, calibration from vanishing points and the special
case of panoramas. An algorithm for camera calibration based on planes has been de-
tailed. This algorithm requires the computation of an homography between each plane

98
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and its image. Any number of planes can be used, and the accuracy of the results gener-
ally increases with the number of planes. A geometrical interpretation of this algorithm
has also been described. Calibration using vanishing points has been studied, with two
algorithms for the calibration itself and five methods for the recovery of a vanishing point
in an image. The geometry of panoramic images and their construction have then been
explained, together with an algorithm for calibration of panoramas.

All the algorithms mentioned in this report have been implemented and evaluated. The
plane-based calibration gives good results if the homographies can be correctly computed.
To this aim, calibrations objects are inevitable in most of the cases (planar patterns with
known configuration for example). This approach is thus less flexible than the other ones.
In this sense, camera calibration with a panorama is easier. It also has the advantage to
provide a larger image, that can be practical for a further image processing. Nevertheless,
the images have to be taken with camera rotations only and no translations. Panorama
calibration can then not be used for pre-existing images or for only one strict single view.
Vanishing points are in the contrary easy to find in single images with parallel lines (like
interiors or buildings), and can be retrieved with a good accuracy, even (and maybe es-
pecially) on paintings. In the case of an interior scene augmentation with virtual pieces
of furniture, the vanishing point calibration method would be recommended as the easiest
calibration technique.

The estimation of the pose of the camera in single views has been treated in chapter
5. This estimation can be performed directly with correspondences between known 3D
points and their 2D image, with planes or with vanishing points. In the case of planes,
an existing algorithm using only one plane has been briefly explained. It has then been
extended to a novel approach for the case where several planes are visible in the image.
This approach handles the situations of known and unknown equations of the planes with
two separate methods. Pose estimation with vanishing points has been discussed with the
presentation of one algorithm. The problem of pose estimation from the 3D coordinates
of a number of points is well known, and several solution have been suggested in the
computer vision community. Among them, seven recent methods have been presented in
this report. Their implementation has been discussed in detail. Their robustness to noise
have been compared using Monte Carlo simulations and has been commented.

If the exact position of a number of points is known in the scene, the direct correspon-
dences algorithms are the best method in terms of accuracy. Among them, the linear algo-
rithms seem to give results that are good enough for a acceptable visual augmentation, and
have a low computation time. They are thus indicated for real-time application like video
scenes augmentation. When the time is not crucial, an additional non-linear optimization
algorithm can be performed to refine the results. Such iterative algorithms improve the
quality of the result. When the user can prepare the scene, however, a practical method
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is the plane-based estimation. In this case, regular planar patterns can be simply taped up
on planar structures, and the multiple plane pose estimation without equations of planes
gives immediate results, without any knowledge of the scene other than planar structures.
When dealing with images of unknown scenes, the only available visible information is
often parallel sets of lines. The vanishing point method is then indicated, and can be eas-
ily combined with the calibration of the camera.

Image augmentation has been made mainly with a wired box in the tests for calibra-
tion and pose algorithms. An improvement of this work could include the choice of the
object to be added in the seen, as well as a 3D reconstruction of the image to allow occlu-
sion handling and changes in the viewing position and orientation.

Most of the algorithms presented here require the intervention of the user. Some of
them could however be automatized. It is for example possible to automatically detect the
vanishing points using a Hough transform approach [22]. For panoramas, Torr and Zis-
serman showed that homographies between images can be automatically estimated [29].
This can be done using a robust correspondence estimation between interest points like
RANSAC [13].

As explained above, there is no best algorithm either for calibration and pose estima-
tion. Consequently, one has to choose the best compromise between available informa-
tion, speed and efficiency when augmenting a single view. An improvement of this work
could thus be to write a more general algorithm which would analyze the information
contained in the image (parallel lines, planes, other objects) and automatically choose
the algorithm that is adapted to the situation. Such an algorithm could reduce the user
interaction and thus make the integration of virtual objects into a single view even easier.



Appendix A

Numerical methods

A.1 Planar homography from four points

The fact that a planar homography can be computed from a set of four 2D to 2D point
correspondencesxi ↔ x′i is well known. Here follows a derivation of this result, inspired
from [17].

The transformation is given by the equation

x′ ∼ Hx

whereH is a3× 3 matrix. This homogeneous equation may be expressed in terms of the
vector cross product asx′×Hx = 0. This form will enable a simple linear solution forH
to be derived. Writingh>

i theith row ofH andx′ = (x′, y′, w′), the cross product may be
given explicitly as

x′ × Hx =

 y′h>
3 x− w′h>

2 x
w′h>

1 x− x′h>
3 x

x′h>
2 x− y′h>

1 x


Sinceh>

i x = x>hi, this gives a set of three equations in the entries ofH, which may
be written in the form  0> −w′x> y′x>

w′x> 0> −x′x>

−y′x> x′x> 0>


 h1

h2

h3

 = 0 (A.1)

The three equations of (A.1) are linearly independent, so that only the first two equa-
tions can be used: [

0> −w′x> y′x>

w′x> 0> −x′x>

]
h = 0 (A.2)
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whereh = (h>
1 , h>

2 , h>
3 )> is the vector made of the entries ofH. Whenn points cor-

respondences are considered, then equations of type (A.2) are stacked in one matrix
equation

Ah = 0 (A.3)

whereA is a2n× 9 matrix.

This shows that with a minimum of 4 points correspondences, the matrixA has the
size8×9 and a rank 8 in general case. Equation (A.3) has then a one-dimensional solution
space, which is sufficient to find the matrixH, defined up to a scale factor. The solving
method is usually a single value decomposition (SVD) ofA.

A.2 Cardan’s Method

Polynomial equations of degree 3 can be directly solved using a method first derived by
Cardan as early as 1545.
We consider a polynomial equation

ax3 + bx2 + cx + d = 0

wherea 6= 0. Dividing the equation bya will not change the solution, so that we can
assume thata = 1 without loss of generality. We first note that this equation can be
reduced to a particular form using the simple variable changey = x + b

3
to get

y3 + αy + β = 0 (A.4)

whereα = c − b2

3
, β = d − bc

3
+ 2b3

27
. We will then consider that the equation to solve

has the form of (A.4) (note that the equation3.12p31 obtained for the problem of radial
distortion already has this from).

Now, lety = u + v. Equation (A.4) becomes

(u + v)3 + α(u + v) + β = 0

that is
u3 + 3u2v + 3uv2 + v3 + α(u + v) + β = 0

which can be rewritten as

(u3 + v3 + q) + (u + v)(3uv + α) = 0.

Thus provided we can findu andv that satisfy the equations:

u3 + v3 + β = 0
3uv + α = 0

(A.5)
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theny = u + v satisfies equation (A.4).
We thus search for two variablesu3 andv3, whose sum is−β and whose product is

−α3

27
. These are the solution of the quadric equation inz:

z2 + βz − α3

27
= 0 (A.6)

whose discriminant isδ = β2 + 4α3

27
. Since we will consider the sign of this determinant,

we will noteQ = α
3

andR = −β
2

and use the discriminant∆ = Q3 + R2 which has the
same sign. The solutions then depends on the sign of∆:

• Case 1:∆ ≥ 0. Equation (A.6) has two real solutionsz1
2 = β

2
±
√

∆. The only real
solution of equation (A.4) is 3

√
z1 + 3

√
z2, that is

3
√

R +
√

∆− Q
3
√

R +
√

∆

• Case 2:∆ < 0. Equation (A.6) has two complex solutionsz1
2 = β

2
± i
√
−∆. z1

andz2 have each three complex cubic roots, but their product must be real, so that
there is only three real solutions to equation (A.4)

−S cos T + S
√

3 sin T

−S cos T − S
√

3 sin T
S cos T

whereS =
3
√√

R2 −∆ andT = 1
3
arctan

√
−∆
R

.

Note that in the case of the radial distortion problem, the solution must be positive
and the continuity atk1 = 0 gives the only solution:

−S cos T − S
√

3 sin T



List of Figures

2.1 Metric rectification with a planar homography. . . . . . . . . . . . . . . 14
2.2 Cross ratio of four concurrent lines. . . . . . . . . . . . . . . . . . . . . 15
2.3 Cross ratio of four planes intersecting at a line. . . . . . . . . . . . . . . 16

3.1 Pinhole camera geometry. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Euclidean transformation between the world and camera frames. . . . . 27
3.3 Radial distortion in an image. . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 The model of radial distortion. . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Best fit line for a set of points. . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Distortion removal in an image of interior scene. . . . . . . . . . . . . . 32

4.1 Vanishing point formation . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Best-fit intersection point. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Maximum likelihood estimate vanishing point. . . . . . . . . . . . . . . 49
4.4 Vanishing point and cross-ratio invariance. . . . . . . . . . . . . . . . . 50
4.5 Geometric construction of the principal point. . . . . . . . . . . . . . . 52
4.6 Example of panorama. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Relative pose from a planar homography. . . . . . . . . . . . . . . . . . 61
5.2 Imaging process of a camera for one point. . . . . . . . . . . . . . . . . 64
5.3 Imaging process for two points. . . . . . . . . . . . . . . . . . . . . . . 66
5.4 Image error and world error. . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Scaled orthographic projection model. . . . . . . . . . . . . . . . . . . 72

6.1 The calibration toolkitMAXCAL . . . . . . . . . . . . . . . . . . . . . . 75
6.2 MAXCALtoolbars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Wired box image augmentation. . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Imprecise panorama building. . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 Drawing a rectangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 Synthetic images for the panorama-based calibration. . . . . . . . . . . 84
6.7 Multiple plane calibration. . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.8 Homography computation accuracy. . . . . . . . . . . . . . . . . . . . 89

104



LIST OF FIGURES 105

6.9 Multiple planes calibration without equations of the planes. . . . . . . . 90
6.10 Pose estimation errors for 4 points correspondences (a). . . . . . . . . . 92
6.11 Pose estimation errors for 4 points correspondences (b). . . . . . . . . . 93
6.12 Pose estimation errors for 5 points correspondences. . . . . . . . . . . . 94
6.13 Pose estimation errors for 6 points correspondences. . . . . . . . . . . . 95



List of Tables

2.1 The hierarchy of geometries. . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Effects of common assumptions on the IAC and the DIAC. . . . . . . . 39

6.1 Results of the panorama-calibration. . . . . . . . . . . . . . . . . . . . 85
6.2 Results of the vanishing points calibration. . . . . . . . . . . . . . . . . 87
6.3 Results of the multiple plane calibration. . . . . . . . . . . . . . . . . . 87

106



Bibliography

[1] Y. I. Abdel-Aziz and H. M. Karara. Direct linear transformation from comparator
coordinates into object space coordinates in close-range photogrammetry. InProc.
Symposium on Close-Range Photogrammetry, pages 1–18, 1971.

[2] A. Ansar and K. Daniilidis. Linear pose estimation from points or lines. InProc.
ECCV, volume 4, pages 282–296, 2002.

[3] B. Caprile and V. Torre. Using vanishing points for camera calibration.Int. Journal
of Computer Vision, 4:127–139, 1990.

[4] R. Cipolla, T.Drummond, and D.Robertson. Camera calibration from vanishing
points in images of architectural scenes. InProc. British Machine Vision Conference,
1999.

[5] A. Criminisi. Accurate Visual Metrology from Single and Multiple Uncalibrated
Images. Springer-Verlag, 2001.

[6] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology.Int. Journal of
Computer Vision, 40(2):123–148, 2000.

[7] D. F. DeMenthon and L. S. Davis. Exact and approximate solutions of the
perspective-three-point problem.IEEE Trans. PAMI, 14(11):1100–1105, 1992.

[8] D. F. Dementhon and L. S. Davis. Model-based objects pose in 25 lines of code.Int.
Journal of Computer Vision, 15(1):123–141, 1995.

[9] F. Devernay and O. D. Faugeras. Straight lines have to be straight.Machine Vision
and Applications, 13:14–24, 2001.

[10] O. D. Faugeras.Three-Dimensional Computer Vision: a Geometric Viewpoint.MIT
Press, 1993.

[11] O. D. Faugeras, Q. Long, and S. J. Maybank. Camera self-calibration: Theory and
experiments. In Springer-Verlag, editor,Proc. ECCV, volume LNCS 588, pages
563–578, 1992.

107



BIBLIOGRAPHY 108

[12] P. D. Fiore. Efficient linear solution of exterior orientation.IEEE Trans. PAMI,
23(2):140–148, February 2001.

[13] M. A. Fishler and R. C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography.Comm. Assoc.
Comp. Mach., 24(6):381–395, 1981.

[14] E. Grossmann, D. Ortin, and J. Santos-Victor. Single and multi-view reconstruction
of structured scenes. InProc. Asian Conference on Computer Vision, 2002.

[15] R. M. Haralick, C. Lee, K. Ottenberg, and M. Nölle. Analysis and solutions of the
three point perspective pose estimation problem. InProc. Conf. on CVPR, pages
592–598, 1991.

[16] R. Hartley, L. de Agapito, and E. Hayman. Linear calibration of a rotating and
zooming camera. InProc. Conf. CVPR, pages 15–21, 1999.

[17] R. Hartley and A. Zisserman.Multiple View Geometry. Cambridge University Press,
2000.

[18] R.I. Hartley. Self-calibration from multiple views with a rotating camera. In
Springer-Verlag, editor,Proc. ECCV, volume LNCS 800/801, pages 471–478, 1994.

[19] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour. Closed form solution of absolute
orientation using orthonormal matrices.Journal of the Optical Society, 5(7):1127–
1135, July 1988.

[20] D. Liebowitz and A. Zisserman. Metric rectification for perspective images of
planes. InProc. Conf. CVPR, pages 482–488, jun 1998.

[21] C. P. Lu, G. D. Hager, and E. Mjolsness. Fast and globally convergent pose estima-
tion from video images.IEEE Trans. PAMI, 22(6):610–622, 2000.

[22] E. Lutton, H. Maitre, and J. Lopez-Krahe. Contribution to the determination of
vanishing points using hough transform.IEEE Trans. PAMI, 16:430–438, 1994.

[23] M. Pollefeys. Tutorial on 3d modeling from images. InProc. ECCV, 2000.

[24] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numerical recipes
in C: the art of scientifc computing. Cambridge University Press, second ed., 1992.

[25] L. Quan and Z. Lan. Linear n-point camera pose determination.IEEE Trans. PAMI,
21:774–780, 1999.

[26] G. Simon, A. W. Fitzgibbon, and A. Zisserman. Markerless tracking using planar
structures in the scene. InProc. ISAR, 2000.



BIBLIOGRAPHY 109

[27] P. Sturm. Algorithms for plane-based pose estimation. InProc. Conf. CVPR, pages
706–711, 2000.

[28] P. Sturm and S. Maybank. On plane-based camera calibration: A general algorithm,
singularities, applications. InProc. Conf. CVPR, pages 432–437, 1999.

[29] P. H. S. Torr and A. Zisserman. Robust computation and parametrization of multiple
view relations. InProc. ICCV, pages 727–732, 1998.

[30] B. Triggs. Autocalibration from planar scenes. InProc. ECCV, 1998.

[31] B. Triggs, M.-A. Ameller, and L. Quan. Camera pose revisited - new linear algo-
rithms. Internal Report - Equipe MOVI - Inrialpes, 2000.

[32] W. Wunderlich. Rechnerische rekonstruktion eines ebenen objekts aus zwei pho-
tographien.Mittsilungen Geod̈at. Inst. TU Gras, 40:365–377, 1982.

[33] Z. Zhang. A flexible new technique for camera calibration.IEEE Trans. PAMI,
pages 1330–1334, 2000.

[34] A. Zisserman, D. Liebowitz, and M. Armstrong. Resolving ambiguities in auto-
calibration.Phil. Trans. R. Soc. Lond., 356:1193–1211, 1998.


	 Introduction 
	Motivation and objectives
	Overview

	From projective to Euclidean Geometry 
	Introduction
	Projective geometry
	Definitions
	The projective plane 
	The projective space 
	Discussion

	Affine geometry
	The affine plane
	The affine space
	Discussion

	Metric geometry
	The metric plane
	The metric space
	Discussion

	Euclidean geometry
	Degrees of freedom
	Number of invariants
	Constraints and degrees of freedom

	Summary

	Camera model and camera calibration
	Camera model
	The pinhole camera model
	The camera projection matrix
	The camera calibration matrix
	Camera rotation and translation
	More about K

	Radial distortion
	Real cameras
	Radial distortion model
	Removing radial distortion

	Camera calibration
	The camera projection matrix
	Calibration approaches
	The DLT algorithm
	Camera calibration
	Pose estimation


	Single view camera calibration
	Calibration from planar structures
	One plane
	Multiple planes

	Calibration from vanishing points
	Calibration and rays
	Vanishing points
	Finding vanishing points in an image
	Determining the calibration matrix K from vanishing points
	Two orthogonal vanishing points
	The case of 3 orthogonal vanishing points

	Calibration in panoramas
	Planar panoramic mosaicing
	Autocalibration from panoramas

	Summary

	Single view pose estimation
	Pose estimation from planar structures
	One plane
	Using a rectangle
	Multiple planes pose algorithm

	Pose estimation from vanishing points
	Pose estimation from 2D/3D correspondences
	Direct Linear Transform
	The absolute orientation problem
	Object rigidity
	Using weight matrices
	Iterative algorithms

	Summary

	Implementation and results
	A calibration toolkit
	Presentation
	Features

	Implementation particularities
	Radial distortion
	Autocalibration in panoramas
	Numerical conditioning for homographies
	SVD normalizing
	Algorithms for calibration and pose
	2D/3D pose estimation

	Tests and results
	Calibration from panoramas
	Calibration from vanishing points
	Plane-based calibration
	One plane pose estimation
	Multiple planes pose estimation
	Pose estimation from vanishing points
	Pose estimation from 2D/3D correspondences

	Summary

	Conclusion
	Numerical methods
	Planar homography from four points
	Cardan's Method

	List of figures
	List of tables
	Bibliography

