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Abstract: Page object detection in scanned document images is a complex task due to varying
document layouts and diverse page objects. In the past, traditional methods such as Optical Character
Recognition (OCR)-based techniques have been employed to extract textual information. However,
these methods fail to comprehend complex page objects such as tables and figures. This paper
addresses the localization problem and classification of graphical objects that visually summarize
vital information in documents. Furthermore, this work examines the benefit of incorporating
attention mechanisms in different object detection networks to perform page object detection on
scanned document images. The model is designed with a Pytorch-based framework called Detectron2.
The proposed pipelines can be optimized end-to-end and exhaustively evaluated on publicly available
datasets such as DocBank, PublayNet, and IIIT-AR-13K. The achieved results reflect the effectiveness
of incorporating the attention mechanism for page object detection in documents.

Keywords: attention mechanism; page object detection; transfer learning; document image analysis

1. Introduction

In the age of the digital era, the inflow of rich, informative documents has been
immense. The number of publications is growing day by day, causing a large corpus of data
to be available for analysis [1]. As a result, the need to extract information from documents
has skyrocketed. Modern rule-based methods [2] have been effective for some time in
extracting text. However, these methods operate with certain shortcomings, such as failure
to capture the structure of the source object, e.g., tables, or to handle layout variations.
With the advent of the deep-learning era, modern data-driven systems have overcome
these shortcomings [3]. They bridge the gap between a traditional and a robust document
detection and analysis system. Apart from text information that can be parsed with efficient
OCR-based systems [4], the documents also contain graphical items, such as tables, figures,
or formulas, that graphically summarize the aspects of the topic in discussion. Hence,
the processing of these graphical objects has caught the research community’s attention.

In general, the problem of page object detection has been addressed in previous works,
such as [5–9]. A general object detection pipeline similar to [10,11] is followed to localize
different types of objects, i.e., equations, tables, and figures, which make up a large portion
of graphical objects present in the documents. The performance observed in these studies
conveys that a deep backbone such as ResNet-152 [12] is required to localize these objects
robustly. Hence, a model with a deep architecture is needed to deal with the inherent
complex structures of the graphical objects and the similarities between them. Tables and
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figures are a few such examples of graphical objects. To reduce the depth in the backbone
without compromising the robustness of object detection, a self-attention mechanism can
be employed after the feature extraction phase.

Attention mechanisms became widely popular when it was first incorporated by
Bahdanau et al. [13] into the sequence to sequence (seq2seq) model, originally proposed by
Kalchbrenner et al. [14], Luong et al. [15], and Cho et al. [16]. It was not until 2017, when
the Transformer was introduced by Vaswani et al. [17], that the self-attention mechanism
was widely adopted. Since then, self-attention mechanisms have been used in many
deep-learning methods. The reason behind its popularity is its innate nature to provide
semantic information to the model by providing saliency over important regions of the
features. Hence, they are now an integral part of techniques in the field of Natural Language
Processing (NLP) and Computer Vision (CV). DynamicHead [18], developed by Microsoft
Inc., is one such variant of attention mechanisms used in this study, which combines a set
of attention modules, such as scale awareness, task awareness, and spatial awareness.

The inclusion of the attention mechanism allows the model to pay attention to the
input images across all the scales, and correlate between similar objects across spatial loca-
tions. It also concurrently focuses on different tasks such as detection, and segmentation.
We train the model end-to-end on a benchmark dataset, i.e., DocBank [19]. The dataset
contains 500,000 annotated images, with 400,000, 50,000, and 50,000 images in training,
testing, and validation sets, respectively. The main goal of this paper is to provide insights
into the improvements gained by incorporating an attention mechanism into a basic deep
learning pipeline. To highlight the contrasting differences, a lightweight backbone such as
ResNet-50 [12], combined with a standard object detection head, e.g., Faster-RCNN [10],
is used as a baseline model in all the experiments. The benefits of residual blocks meant
to deal with vanishing and exploding gradients, while containing a relatively small num-
ber of parameters, make ResNet-50 the ideal candidate as a backbone for the baseline.
The attention mechanism is then incorporated into the baseline configuration to enable
direct comparison between a model with and without the attention module. Additionally,
more sets of backbones and detection heads are used in the experiments to showcase the
performance with stronger backbones, discussed in detail in Section 5.

Due to the diverse distribution of labels in DocBank, including rare objects such as
section, title, and reference, along with the more commonly found annotations, i.e., table,
figure, and paragraph, a comprehensive study is carried out to identify the labels which
attain the maximum attention and the ability of the model to learn the representation of
rarely appearing labels. For the sake of fair comparison, the whole pipeline is trained and
tested further with the datasets PublayNet [20] and IIIT-AR-13K [21], again containing an-
notated document images. The samples from each dataset are shown in Figure 1. A detailed
overview of the results of the carried out experiments can be found in Section 5. To further
examine the effects of DynamicHead, a sparse method called Sparse-RCNN [22] is used as
an object detection head, along with a dense-to-sparse head, such as Faster-RCNN.

The motivation to choose a sparse head lies in the fact that the document images
contain a fairly sparse number of objects in contrast with natural images. The number of
objects can be dense, on various scales, and in unexpected locations. The head exploits the
back-propagation on the proposal boxes, i.e., the proposal boxes are learned during training,
which completely avoids the use of Region Proposal Network, anchor placements, and any
need for post-processing, such as non-maximum suppression. Furthermore, proposal
features are learned during training that captures the semantic information about the
objects, helping the head learn its representation and generalize based on the understanding
of the characteristics of the objects. Hence, the head tunes its proposals to best match the
dataset. In Section 5, a comparison between baselines for each dataset and our model using
the above mentioned detection heads are carried out.

The following chapters are organized as follows: Section 2 gives a brief insight on the
advent of attention mechanism to image processing, and its developments and Section 3
covers the main methodology behind the model pipeline along with technical details about
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DynamicHead, followed by the Experiments, Results and Discussion, and Conclusions and
Future Work in Sections 4–6, respectively.

Figure 1. Visual representation of the detections obtained by the proposed model on publicly available
benchmark datasets, i.e., DocBank [19], PublayNet [20], and IIIT-AR-13K [21]. Colors are used as
visual embeddings to distinguish various detected objects. Blue, orange, green, and black represent
paragraphs, title, figures, and tables, respectively. The first, second, and third rows represent samples
from DocBank, IIIT-AR-13K, and PublayNet, respectively.

2. Related Work
2.1. Page Object Detection

In the initial days, traditional computer vision techniques were employed on docu-
ments to detect graphical objects. The classic methodologies in the past employed image
processing techniques, such as binarization and linked component analysis. Contrarily,
deep learning-based approaches leverage the Convolutional Neural Network (CNN) as a
backbone to extract the features from document images [23,24].

2.1.1. Traditional Approach

To achieve table detection, the earlier approaches have established a specific un-
derlying structure for tables in a document. Tupaj et al. [25] utilized Optical Character
Recognition (OCR) to extract tabular information. The algorithm attempts to determine
probable table regions by evaluating the keywords and white spaces. The primary draw-
back of this strategy is its total reliance on the presumptions about the tables’ structure
and the gathering of the employed keywords. In the area of table analysis, Wang et al. [26]
introduced a new approach. To detect table lines, it uses the distance between consecutive
words. Following that, table entity candidates are proposed by grouping adjacent vertical
lines with successive horizontal words. However, the fundamental premise is that a table
can have no more than two columns. As a result, three different layouts (single, double,
and mixed columns) are created using this method. This approach has the disadvantage of
application to a small number of designed tables.
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2.1.2. Deep Learning Approach

In terms of the deep-learning approach, the initial attempts toward page object de-
tection were carried out by Saha et al. [27] by building a GOD-framework to detect tables
and figures. The model trains on a vast corpus of document images and obtains a trained
model capable of distinguishing the graphical objects with good accuracy. Furthermore,
a comparison is carried out between the traditional rule-based techniques and the GOD-
framework to prove the effectiveness of the deep-learning approach in identifying and
localizing document images, without any prior assumptions. Furthermore, the CasTab-
DetectoRS network [6] takes the task a step further by incorporating Cascade networks
for identifying tables. It also introduced the concept of the Recursive Pyramid Network
(R.P.N.), an extension of the well-known Region Proposal Network [10], and Switchable
Atrous Convolutions [28]. Altogether, it experiments with a wide range of datasets and
outperforms most models in detecting tables.

In 2019, Huang et al. [29] authored a YOLO-based table detection method. The con-
trasting difference between natural images and graphical objects is addressed in their work.
An anchor optimization strategy is employed to identify anchor sizes that are optimized to
fit the tables. This enables the model to find the exact locations of the tables, making it more
robust. Fairly recent research by Ma et al. [30] introduced RobusTabNet to localize tables
and further proposed a split-and-merge method for recognizing the structure of a table
by detecting the separation lines. This enables robust identification of the tables, in any
orientation, e.g., warped orientation. They also introduced a new region proposal network
called CornerNet to generate high-quality table proposals for the detection heads.

2.2. Attention Mechanism

Since the advent of the attention mechanism, many researchers found the application
of attention in Computer Vision. The advancements in vision-based attention can be
divided into four phases. The first phase introduces reinforcement learning-based attention
via Recurrent Neural Networks (RNN) [31]. The main idea is to estimate the optimal
local features through a moving local window. The process is learned by the model via
rewards, given when an important feature is selected by the moving window. In the second
phase, the first global attention mechanism is introduced [32]. This work applies an affine
transformation to the features, to translate the features to a consistent orientation, discarding
the confusion of the model over similar features. In the third phase, channel-based attention
is introduced [33], where the squeeze-and-excitation process assigns weights to the feature’s
channels. This process tailors the saliency of the features to adapt to the problem being
addressed by the model. Finally, the fourth phase introduces self-attention [34]. The main
idea is to judge any local feature by its global context.

The method discussed in this paper follows the concepts from the fourth phase. This
approach attempts to capture the dependencies at a long range, by computing activation
at a position by a weighted sum of all the features at all the locations of the feature maps.
The general idea of non-local dependency computation for a feature map at a given location
is to apply pairwise multiplication of the local features at the given location with the local
features at other spatial locations. Hence, self-attention is obtained, allowing the network
to learn from the different areas of the image.

3. Method

This section presents the unified framework for page object detection with the help
of existing models [10,18,22]. The overall architecture can be seen in Figure 2. The entire
model is built on Detectron2 [35], a Pytorch-based deep learning framework. Due to its
easy integration, dynamic backbone attachment, and a dedicated text-based configuration
format to control the pipeline, Detectron2 plays a major role in providing a structured way
of building a model. As the first step of the pipeline, a standard backbone, e.g., ResNet [12],
Swin Transformer [36], or ConvNeXt [37], is used for extracting semantic features from the
input. This is known as the bottom-up pathway. The feature maps obtained during the
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bottom-up from the backbone stages are fed into the Feature Pyramid Network (FPN) [38],
forming the top-down pathway of the backbone. The final features P = {Pi}5

i=2 (where Pi
denotes a feature extracted from the block i of the top-down pathway) of different scales
are extracted and fed into the self-attention mechanism, i.e., DynamicHead, the details of
which are discussed in Section 3.1.

Scale 

Backbone Network

Feature Pyramid
Network 

Detection Head

x5

DynamicHead

Input Output

Activation (ReLU)

Hard Sigmoid

Average Pooling

Convolution

Scale-Aware

Average Pooling

ReLU

Normalize

FC layer (x2)

Mask Offset

Activation (Sigmoid)

Convolution

Spatial-Aware Task-Aware

Figure 2. System design: the pipeline for page object detection using attention-mechanism. It consists
of one of the backbones (i.e., ResNet-50, ConvNeXt, or Swin Transformer) which acts as the bottom-up
feature extractor for the Feature Proposal Network (FPN). The top-down pathway of FPN performs
deconvolution in four blocks, each block with varying scale. Then, the multi-scale features from
different blocks of FPN are fed into the attention module, DynamicHead. The DynamicHead module
sequentially processes the fed features through scale-aware, spatial-aware, and task-aware sub-
modules. To obtain optimal attention, the DynamicHead module is applied to the features multiple
times (i.e., five times). The gradient maps extracted from each sub-module within DynamicHead
are indicated by the blue arrows. Finally, the features are passed on to the detection head (e.g.,
Faster-RCNN or Sparse-RCNN) to obtain the bounding box predictions.

3.1. DynamicHead

DynamicHead [18], referred to as DyHead in this paper, is a unified attention mecha-
nism comprising three different attentions, each focusing on different aspects of the features.
As the document images contain similar objects in various scales, e.g., paragraphs, tables,
figures, and references, DynamicHead helps the overall model to transform its weights for
the objects in various scales and in different spatial locations to be identified.

To have a concatenated feature set to be fed into DynamicHead, the FPN features are
resized to a median scale by using either up-sampling or down-sampling on each feature
level. The concatenated features are denoted by R. These features are then fed into a
series of blocks comprising scale-aware, spatial-aware, and task-aware attentions in the
mentioned order.

3.1.1. Scale-Aware Attention

The featuresR are given as input to this sub-module. It performs attention by com-
puting combined features that are obtained by interpreting the standard features across all
scales, eventually activating the critical regions. The equation for applying attention, as de-
scribed in [18], is given by Equation (1), where H, W, and C are height, width, and channel,
respectively, f is the linear function, and σ is the Hard-Sigmoid function [39]. The final
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features Rscale are obtained by combining Attnscale(R) and the input features R via dot
product, as shown in Equation (2):

Attnscale(R) = σ

(
f

(
1

HWC ∑
H,W,C

R
))

(1)

Rscale = Attnscale(R) · R (2)

3.1.2. Spatial-Aware Attention

This sub-module takes Rscale as input and generates output features Rspatial by ac-
tivating the regions of Rscale, where similar objects exist across various spatial locations
in the features. This allows the detection heads to focus on various locations of the input
images to robustly detect them. The attention is applied as follows:

Attnspatial(R) =
1
L

L

∑
i=1

S

∑
j=1
R
(
i;
(
αj
)
+ offset

(
αj
)
; η
)
· ∆j (3)

Rspatial = Attnspatial(R) · R (4)

In Equation (3), as originally introduced in [18], L is the number of levels of Rscale,
S is the number of samples obtained by applying deformable convolutions [40] on the
features to make the features sparse, offset() is the spatial offset function that focuses on
the important regions of the features, αj denotes spatial features at sample j, η denotes that
the attention is applied over all the channels of the features, and ∆j is a scalar to improve
the attention which is learned via back-propagation. The attention is applied to all the
spatial samples, and later to all the levels. The final featuresRspatial , given by Equation (4),
are obtained by the dot-product of Attnspatial(Rscale) andRscale.

3.1.3. Task-Aware Attention

This is the last module that actively learns to activate the required channels from
the features, tailored specifically to the tasks to be carried out, such as bounding-box
regression and segmentation. The attention is originally stated in [18], and given by
Equation (5) in this paper, where Rc is the cth channel of the features and A1, A2, B1,
and B2 are the hyper-functions that control the weights and thresholds for activation.
The hyper-function is implemented by conducting global average pooling on the feature
dimensions for dimensionality reduction, and by applying shifted sigmoid function (range:
[−1, 1]). Similar to the spatial and scale-aware sub-modules, the final featuresRtask, given
by Equation (6), are obtained by the dot-product of Attntask(Rspatial) andRspatial :

Attntask(R) = max
(

A1(R) · Rc + B1(R), A2(R) · Rc + B2(R)
)

(5)

Rtask = Attntask(R) · R (6)

The final step involves attaching the three mechanisms in the order of Attnscale,
Attnspatial , and Attntask, which make up a single DynamicHead block. These blocks can be
stacked together after the FPN to improve the overall attention effectiveness. The output
feature maps obtained after passing through a series of DynamicHead blocks are passed
to the object detection head. The effectiveness of DynamicHead is discussed in Section 5,
where various detection heads are used.

3.2. Detection Head

The feature maps obtained from DynamicHead blocks are passed onto the object
detection head. There are two object-detection heads mainly used by the model, i.e., Faster-
RCNN and Sparse-RCNN.
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3.2.1. Faster-RCNN

Faster-RCNN receives the features from the DyHead block. The detailed pipeline
of Faster-RCNN is given by Figure 3. Due to the multi-scale property of features, one
anchor level per feature scale is assigned to the features instead of multiple anchor levels
per feature scale, as used in the original Faster-RCNN [10] implementation. To be precise,
five features, each of different scales received from the DyHead block, are assigned anchors
of areas 32, 64, 128, and 256 in the given order. Furthermore, multiple aspect ratios are used
at each anchor level, i.e., (0.5, 1.0, 2.0). Finally, the features are aligned to equal sizes using
ROI-Pooling and passed to the regressor and classifier for predictions.

RFaster-RCNN

fc cls

reg

R
O

I Pooling

Backbone
Output
Image

Attention
Mechanism

FPN

Input Image RPN

Figure 3. Flow diagram of page object detection with Faster-RCNN in detail. The features passed to
the Faster-RCNN head initially passed through the Region Proposal Network (RPN) for generating
proposal boxes of different dimensions. They are then aligned via ROI Pooling, to obtain fixed-size
features. These features are then passed as fully connected layers (FC). Finally, the detected object is
classified and a bounding box is computed.

3.2.2. Sparse-RCNN

The Sparse-RCNN head performs an ROI-aligned operation to obtain equal-sized
features from the features fed by the DyHead block with the help of an initial set of proposal
boxes (randomly initialized). Figure 4 describes the pipeline followed by Sparse-RCNN.
The number of proposals given by Sparse-RCNN is set to 300 for this study. The proposal
features are learned during the training process by learning the semantics of the objects
present. Hence, learned proposals help the detection head to tailor the ROI boxes and reduce
the computational cost for post-processing techniques such as non-maximum suppression.

The Iterative Head from Sparse-RCNN takes the ROI-aligned features and integrates
the learned proposal features independently, i.e., ROI_boxk and proposal_featurek for all
k ∈ N are integrated, where N denotes the number of proposal boxes. Finally, the integrated
feature maps are passed via fully connected layers (FC) and passed to the classifier and box
predictor. A detailed overview of the experiments carried out is discussed in Section 4.
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Sparse-RCNN

ROI box k

Proposal Boxes Proposal features

Iterative
Head

proposal feature k

fc

fc cls

reg
FPN

Backbone

Attention
Mechanism

Output
 Image

Input Image

Figure 4. Flow diagram of page object detection with Sparse-RCNN in detail. Sparse-RCNN takes
features from DyHead, and learns and proposes the optimal Region of Interest (ROI) boxes for the
features, instead of a Region Proposal Network (RPN). The features are concatenated with latent
proposal features, passed as FC layers, to predict and classify the objects.

4. Experiments
4.1. Experimental Setup

In this section, details are discussed about various experiments carried out using the
previously elaborated model with different datasets. The model is trained and tested on
DocBank, IIIT-AR-13K, and PublayNet. The image dimensions vary slightly intra-dataset
and inter-dataset. To solve this issue, all the images are modified by resizing the shortest
edge to a fixed edge length, while retaining the aspect ratio. The model is implemented
using a Pytorch-based framework called Detectron2 and trained on eight RTX3090 GPUs.

4.2. Evaluation Metrics

The model performance is assessed using the following metrics: Average Precision
(AP), Precision, Recall, and F1-score. The results are presented for different IoU thresholds,
to fairly evaluate the model’s performance.

4.2.1. Precision

Precision [41] is defined as the fraction of correctly predicted samples among the total
predictions predicted as positive. The mathematical formula is given by:

Precision =
True Positives

True Positives + False Positives
(7)

4.2.2. Recall

Recall [41] is defined as the fraction of correctly predicted samples among all the
predicted samples that are positive in Ground Truth. The mathematical formula is given by:

Recall =
True Positives

True Positives + False Negatives
(8)

4.2.3. F1-Score

F1-Score [41] is the measure of the overall accuracy of the model, based on the precision
and recall, i.e., the harmonic mean of Precision and Recall. The mathematical formula is
given by:

F1-Score =
2 × Precision × Recall

True Positives + Precision + Recall
(9)



Appl. Sci. 2022, 12, 7486 9 of 18

4.2.4. Average Precision (AP)

Average Precision [42] is given by the arithmetic mean of precision scores for each
sample retrieved. It essentially summarizes the precision-recall curve in a value. The math-
ematical formula is given by:

AP =
∑rec P@rec

R
(10)

where ∑rec P@rec is the summation of precision values for each recall value and R is the
total recall value.

4.2.5. Intersection over Union (IoU)

Intersection over Union [43] is the measure of the portion of the predicted area com-
pared to the ground-truth area. The mathematical formula is given by:

IoU(X, Y) =
Intersection of areas of A and B

Union of areas of A and B
=
|A ∩ B|
|A ∪ B| (11)

4.3. Dataset Details

Three publicly available datasets are chosen for the experiments shown in this paper,
i.e., DocBank, PublayNet, and IIIT-AR-13K. These datasets are chosen primarily due to their
focus on documents. Since these datasets are relatively new, this paper hopes to provide a
good insight into the dataset, its distributions, and its applications in page object detection.
The distribution of data objects in each of the datasets is given by Table 1.

Table 1. The data distribution of datasets used for the experiments. These datasets are divided into
train and test sets, with major classes, generally found in documents, spanning over both training
and test sets.

Dataset No of Classes
No of Images

Train Test

DocBank 13 400,000 50,000
PublayNet 5 335,703 11,245
IIIT-AR-13K 5 9333 1955

Furthermore, the experimental results are distributed into two categories. The first
category, elaborated in Section 5, contains the results obtained by training the original
datasets on different model variants. The second category contains the results of the model
trained on the sub-set of each dataset, containing common classes across the three datasets,
i.e., table, figures, and paragraphs. The second category aims to convey to the readers
about the cross-dataset detection capabilities, with a detailed explanation in Section 5.4.

5. Results and Discussion

This section discusses the experimental results of the model trained using various
backbones and object detection heads. The standard metrics, i.e., Precision (7), Recall (8),
F1-score (9), and AP (10) for IoU (11) levels with a range of [0.5, 0.95], are used to compare
baselines and the proposed pipeline. All the models are trained for a 1x schedule (12 epochs)
with a batch size of 8, on RTX3090 GPUs. Lightweight backbones, such as ResNet-50 or
the tiny versions of ConvNeXt and Swin-Transformer, are used for the experiments. The
reason for choosing lightweight backbones is to adhere to the goal of this paper to show
the importance of the attention mechanism with a minimal backbone. Furthermore, tiny
versions of ConvNeXt and Swin Transformers contain a similar number of parameters as
ResNet-50, while providing additional benefits of improved saliency over the extracted
features. For all the experiments discussed in this section, the baseline model is chosen as
Faster-RCNN, with ResNet-50 as the backbone to adhere to the goal of this paper.
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5.1. DocBank

Table 2 shows the experimental results obtained from the baseline model and the
attention-based models. All the results shown are calculated for bounding boxes to fairly
compare with the baseline model. To the best of my knowledge, this work is the first at
computing the metrics on DocBank. Therefore, a comparison with the prior literature is
not available.

Table 2. Performance evaluations of DocBank using Faster-RCNN with different backbones. Re-
sults with Sparse-RCNN using ResNet-50 backbone are also presented. For Faster-RCNN+ResNet-
50, the inclusion of the attention mechanism improves the mAP by 5.18. The Faster-
RCNN+DyHead+ConvNeXt (tiny) combination outperforms baseline model and the other model
variants containing DyHead by a large margin.

Model Faster-RCNN
(Baseline)

Faster-RCNN
+DyHead

Sparse-RCNN
+DyHead

Backbone ResNet-50 ResNet-50 ConvNeXt (tiny) Swin (tiny) ResNet-50

Average
Precision

(AP)

paragraph 74.35 80.01 87.51 40.46 84.52
equation 65.17 74.22 83.45 61.03 78.08
abstract 83.22 86.40 92.07 90.40 91.61
table 71.14 77.68 86.73 76.02 86.31
list 54.88 66.82 81.31 68.71 76.97
section 65.10 71.93 80.02 63.37 75.15
figure 62.62 64.99 71.39 60.61 71.92
author 44.79 55.72 76.36 72.4 74.18
footer 64.51 70.61 81.84 77.03 78.66
caption 71.12 75.65 83.32 75.75 80.78
date 7.14 0 44.17 0 36.85
title 77.27 79.80 85.96 85.45 82.44
reference 77.31 82.18 88.13 81.91 87.03

mAP 62.97 68.15 80.18 65.63 77.27

ConvNeXt and DyHead with the standard Faster-RCNN gives the best performance
of all our experiments on the DocBank dataset. The Faster-RCNN+ConvNeXt+DyHead
model is trained from scratch, as ConvNeXt is a relatively new backbone compared to Swin
Transformers or ResNet-50, containing publicly available pre-trained weights trained on
ImageNet [44]. Furthermore, Table 3 shows the F1-score, Precision, and Recall for IoU levels
of 0.5 to 0.9, using the best model, i.e., Faster-RCNN+ConvNeXt+DyHead. The model
performs the best at the IoU level of 0.5, and the performance gradually declines as the IoU
increases due to a reduction in False Positives. Figure 5 shows the visual improvements
in the detections carried out by the baseline model, Faster-RCNN+ResNet-50+DyHead,
and Faster-RCNN+ConvNeXt+DyHead variants.

Table 3. The model performance results for Faster-RCNN+ConvNeXt+DyHead (bbox) on DocBank.

IoU AP Precision Recall F1-Score

0.5 90.95 0.94 0.91 0.86
0.6 89.99 0.93 0.90 0.85
0.7 87.64 0.91 0.88 0.84
0.8 82.85 0.87 0.83 0.81
0.9 66.79 0.72 0.67 0.72
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(a) (b) (c)
Figure 5. Detection results of DocBank [19] obtained from the baseline, Faster-RCNN+ResNet-
50+DyHead, and the Faster-RCNN+ConvNeXt+DyHead model. The bounding-box colours red,
green, and blue represent equations, figures, and paragraphs, respectively. (a) The samples ob-
tained from the standard Faster-RCNN model using ResNet-50 as the backbone, without attention.
(b) The corresponding improved samples obtained when the attention mechanism is incorporated
into the pipeline used in (a). (c) The samples obtained when ResNet-50 is replaced by ConvNeXt,
and attention is added to the baseline model’s pipeline. The level of misclassifications, and the
bounding-box accuracy of the detected objects is drastically improved in (b) just by the addition of
attention. The results are further improved in (c), where nested detections are discarded.

The DynamicHead module clearly improves the detection of graphical objects when
compared with the baseline. Furthermore, DynamicHead coupled with ConvNeXt proves
to perform the best while also dealing with the nested detections found in the Faster-
RCNN+ResNet-50+DyHead variant. Although the detections performed are adequate,
certain discrepancies in the DocBank dataset annotations slightly impact the performance
of the model. Some of the examples are shown in Figure 6, e.g., figures are annotated
as paragraphs, and annotations contain nested annotations within them. Hence, these
discrepancies hinder the model’s representation learning, leading to misclassifications.

(a) (b)
Figure 6. Samples chosen from the DocBank [19] dataset show that few annotations are wrongly
classified or nested annotations exist. (a) The existence of too many nested annotations in the ground-
truth, which can negatively impact the model’s prediction power. (b) The anomalies present in the
annotations, such as equation numbers (dark-green color) marked as equations, causing the model
to misclassify.



Appl. Sci. 2022, 12, 7486 12 of 18

5.2. PublayNet

In the case of PublayNet, the proposed architecture beats the baseline results. Table 4
shows the test results using different variants of the architecture. The inclusion of Dynamic-
Head improves the baseline mAP scores by 1.65. Furthermore, ConvNeXt as the backbone
further improves the scores by 4.22.

Table 4. Performance evaluations of PublayNet using Faster-RCNN with different backbones. Results
with Sparse-RCNN using ResNet-50 backbone are also presented. For Faster-RCNN+ResNet-50,
the attention mechanism contributes a slight improvement. However, the model benefits largely from
the ConvNeXt backbone complemented with the attention mechanism to improve the feature saliency.

Model Faster-RCNN
(baseline)

Faster-RCNN
+DyHead

Sparse-RCNN
+DyHead

Bacbone ResNet-50 ResNet-50 ConvNeXt Swint-tiny ResNet-50

Average
Precision

(AP)

text 91.3 92.72 94.29 92.23 92.71
title 81.2 85.94 88.72 85.31 82.75
list 88.5 89.04 94.34 87.81 87.84
table 94.3 96.57 97.62 96.73 95.32
figure 94.5 94.01 96.12 94.23 92.05

mAP 90 91.65 94.22 91.27 90.14

The combination of ConvNeXt and DyHead with the standard Faster-RCNN surpasses
the baseline scores. Table 5 shows the F1-score, Precision, and Recall values for IoU levels
of 0.5 to 0.9 for this model variant. Figure 7 shows detections obtained on PublayNet
samples using different variants of the model. At first glance, it is clear that the use of
DynamicHead improves the localization of the graphical objects. Similar to the results in
Section 5.1, Faster-RCNN+ConvNeXt+DyHead performs the best out of all the variants.

The model performs fairly better on PublayNet compared to DocBank. The dataset
contains distinct classes which allow the model to discreetly interpret their distinct features.
The F1-score at different IoU levels, as shown in Table 5, also conveys the robustness of
the model to detect objects even at the highest IoU level, i.e., 0.9. Additionally, with the
existence of high-quality annotations present in both train and test sets, the model does not
suffer from confusion.

Table 5. The model performance results for ConvNeXt+DyHead backbone with Faster-RCNN (bbox)
on PublayNet.

IoU AP Precision Recall F1-Score

0.5 97.17 0.98 0.97 0.95
0.6 96.71 0.97 0.97 0.95
0.7 95.88 0.97 0.96 0.95
0.8 93.49 0.94 0.93 0.93
0.9 84.43 0.86 0.84 0.86
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(a) (b) (c)
Figure 7. Detection results of PublayNet from baseline, Faster-RCNN+ResNet-50+DyHead, and the
Faster-RCNN+ConvNeXt+DyHead model. The colors blue, black, and green represent paragraphs,
tables, and figures, respectively. (a) The samples obtained from the baseline model with Faster-RCNN
using ResNet-50 as the backbone. (b) The samples obtained with the attention mechanism incorpo-
rated into the pipeline of the baseline model. (c) The detections by Faster-RCNN+ConvNeXt+DyHead
model. The detections are clean and accurate with the inclusion of the attention mechanism. Further-
more, DyHead and ConvNeXt prove to detect the objects better compared to its counterparts with
fewer nested detections.

5.3. IIIT-AR-13K

The importance of the attention mechanism is best conveyed with the IIT-AR-13K
dataset, as the difference in performance between baseline model and attention-based
models is large. The baseline model struggles to interpret the features when similar objects
with different labels exist, i.e., figures, signatures, and natural images, whereas the attention-
based architecture improves the localization capabilities of the model in comparison with
the baseline model, as shown in Table 6. The results contain the estimated label-based
and mean mAP scores for tests performed using different variants of the architecture.
The comparison with prior methods is not provided, as the dataset is used only for table
detection in other articles, unlike our experiments on all the classes.

Table 6. Performance evaluations of IIIT-AR-13K using Faster-RCNN with different backbones.
Results with Sparse-RCNN using ResNet-50 backbone are also presented. The baseline model fails to
achieve robustness with this dataset. Nevertheless, inclusion of DynamicHead improves the mAP
score by 11.18 in comparison with baseline, confirming the drastic improvements with attention
mechanism. The results are further improved with ConvNeXt backbone with the mAP score roughly
double the baseline score, i.e., 33.30 to 69.74.

Model Faster-RCNN
(baseline)

Faster-RCNN
+DyHead

Sparse-RCNN
+DyHead

Backbone ResNet-50 ResNet-50 ConvNeXt (tiny) Swin (tiny) ResNet-50

Average
Precision

(AP)

table 71.10 82.58 88.60 87.58 85.04
logo 2.55 3.67 52.70 42.01 21.48
figure 37.45 39.96 64.01 64.69 51.10
signature 17.73 43.38 66.17 66.75 53.56
natural_image 37.67 52.81 77.21 82.16 81.22

mAP 33.30 44.48 69.74 68.64 58.48

The ConvNeXt variant performs the best out of all the combinations of our model,
the outputs of which can be visualized in Figure 8. The contrasting differences can be
found between the baseline model and the Faster-RCNN+ResNet-50+DyHead variant.
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However, the detections are similar between Faster-RCNN+ResNet-50+DyHead and Faster-
RCNN+ConvNeXt+DyHead models. Nevertheless, when the granular details are com-
pared, the ConvNeXt variant computes bounding boxes more accurately. Table 7 shows
the F1-score, Precision, and Recall for IoU level values of 0.5 to 0.9, computed for the
RCNN+ConvNeXt+DyHead model. It can be observed that the model is not robust enough
to localize the objects when high level of overlap is expected between ground-truth and
computed bounding boxes, i.e., at IoU levels 0.8 and 0.9.

(a) (b) (c)
Figure 8. Detection results of IIIT-AR-13K obtained from the baseline, Faster-RCNN+ResNet-
50+DyHead, and Faster-RCNN+ConvNeXt+DyHead. The color black represents tables in the sub-
figures. (a) The samples obtained from the baseline model. (b) The corresponding samples obtained
with attention mechanism incorporated into the pipeline followed in baseline model. (c) The detec-
tions on samples by the Faster-RCNN+ConvNeXt+DyHead variant. Attention mechanism-based
results have no signs of erroneous detections of Tables as compared to the baseline.

Table 7. The model performance results for ConvNeXt+DyHead backbone with Faster-RCNN (bbox)
on IIIT-AR-13K.

IoU AP Precision Recall F1-Score

0.50 91.44 0.93 0.91 0.89
0.6 89.09 0.91 0.89 0.87
0.7 84.21 0.86 0.84 0.84
0.8 70.65 0.74 0.71 0.75
0.9 36.22 0.41 0.36 0.47

5.4. Cross-Dataset Evaluation

To facilitate cross-dataset comparison, each dataset is reduced to the labels that are
common among all three datasets, i.e., table, figure, and paragraph. The Leave-One-Out
strategy is employed here, where the model is trained on one dataset and tested on the
other two. This is done in order to evaluate the cross-dataset performance of these models.
The purpose of cross-validation is to assess the effectiveness of the learned representation
and the generalization of the model’s prediction power across different data distributions.
The Faster-RCNN+ConvNeXt+DyHead combination is used in this assessment, as it has
been proven to consistently perform better than the other model variants. The comparison
metrics are shown in Table 8.
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Table 8. The cross-validation results using Leave-One-Out strategy on DocBank, PublayNet, and IIIT-
AR-13K. All results are obtained from the model with Faster-RCNN+ConvNeXt+DyHead. Similarities
between the DocBank and PublayNet data evidently help the model detect objects with better
performance as opposed to IIIT-AR-13K. Furthermore, due to anomalies in DocBank, as compared to
the clean annotations in PublayNet, training with PublayNet and testing with DocBank yields poor
results compared to the opposite scenario, i.e., training on DocBank and testing on PublayNet.

Train Dataset Test Dataset Metrics [0.5:0.95]
Precision Recall F1-Score mAP

1. DocBank PublayNet 0.81 0.77 0.77 76.62
IIIT-AR-13K 0.46 0.37 0.44 36.72

2. PublayNet DocBank 0.56 0.50 0.57 50.45
IIIT-AR-13K 0.42 0.36 0.41 36.25

3. IIIT-AR-13K DocBank 0.53 0.47 0.57 46.74
PublayNet 0.65 0.60 0.66 59.53

It can be observed that the performance of the model drops with the Leave-One-Out
strategy. For example, as shown in Table 4, Faster-RCNN+ConvNeXt+DyHead scores
94.22 mAP with its own test set but scores 50.45 mAP at best with other datasets. This
indicates the features learned by the model are highly dependent on the data distribution
and any slight change in the data distribution needs re-learning of the target distribution.
Nevertheless, PublayNet receives the highest cross-validation score with an F1-Score of
77%. Interestingly, all the trained models fail to generalize on IIIT-AR-13K, due to the
differences in the visual representation of graphical objects in IIIT-AR-13K. Figure 9 shows
the difference between samples from IIIT-AR-13K and the other two datasets.

Figure 9. Different visual representations present in DocBank [19] and PublayNet [20] v/s IIIT-
AR-13K [21]. Columns 1, 2, and 3 represent samples from DocBank, PublayNet, and IIIT-AR-13K,
respectively. The colours blue and green represent paragraphs and figures, respectively. The vital
distinction in the data distribution lies in the layout of the datasets. Figures and paragraphs are
homogeneous in PublayNet and DocBank, whereas in IIIT-AR-13K, the samples follow a different
layout, font-style, and document structure.

5.5. Computational Analysis

In this section, the details regarding various model properties and their corresponding
runtime complexities are discussed. As the primary dataset for this paper remains DocBank,
all the data presented in Table 9 are computed for the same dataset.
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Table 9. The computational complexity of our algorithm with various configurations. The baseline
configuration consists of a ResNet-50 backbone and Faster-RCNN as the head. All the rest use DyHead
as the attention mechanism along with a backbone and the head. The addition of DyHead module
adds an overhead to the runtime of the overall model, due to additional parameters. An interesting
observation is the runtime of Sparse-RCNN with DyHead. Due to learned proposals, the model runs
faster than its counterpart with a similar configuration, i.e., Faster-RCNN + ResNet-50 + DyHead.

Model Backbone Runtime (FPS) No. of Parameters
(in Millions) GPU Batch Size

Faster-RCNN
(Baseline) ResNet-50 9.25 41.3 RTX3090 1

Faster-RCNN
+ DyHead ResNet-50 4.84 53.2 RTX3090 1

Faster-RCNN
+ DyHead Swin (tiny) 4.24 59.3 RTX3090 1

Faster-RCNN
+ DyHead ConvNeXt (tiny) 4.41 56.6 RTX3090 1

Sparse-RCNN
+ DyHead ResNet-50 6.41 111.93 RTX3090 1

6. Conclusions and Future Work

In this paper, we propose an object detection pipeline by combining standard modules
present in the object-detection world to demonstrate the effectiveness of the attention
mechanism on page object detection. The model is trained using three datasets having
high-quality annotations and a huge corpus of images for the model to learn adequately
without over-fitting. A new backbone, ConvNeXt, was incorporated to improve the quality
of model learning, showing that the combination of the right backbone and attention
mechanism can improve object detection by a good margin.

DocBank and PublayNet share similar visual representations, whereas the IIIT-AR-
13K images contain different visual embeddings. Hence, the model proposed in this
paper, trained on either DocBank or PublayNet, never encounters graphical objects found
in IIIT-AR-13K and fails to classify and segment them appropriately. For the DocBank
dataset, the model performance shows an adequate understanding of the data distribution.
In some areas, the model suffers from outliers while distinguishing between identical
graphical objects, such as paragraphs and captions. Overall, the proposed attention-based
model performs the best with the PublayNet dataset due to distinct class labels and clean
annotations. The model also benefited from the huge training set. Finally, with IIIT-AR-13K,
the model performance takes a big leap compared to the baseline model, although the
visual embeddings are extremely ambiguous compared to the other two datasets. A cross-
validation experiment is also conducted between the datasets. This experiment evaluates
the generalization of models based on a reduced dataset containing the common class
labels in all three datasets. The model trained on the reduced set of DocBank generalises
extremely well, which is indicated in Table 8. Overall, the DynamicHead module proves to
be extremely useful in providing saliency over the important regions of the documents that
can help improve the models’ performance.

To better understand the importance of attention, the future aspects are to evaluate
the activations on the input images by extracting the gradients and assessing them. Fur-
thermore, due to the specific visual properties of documents, compared to complex natural
images, the model can over-fit easily. To avoid that, increasing the dataset further will help
overcome sensitivity issues towards the outliers and help the model achieve robustness.
An additional future task would include filtering the anomalies from annotations of the
dataset to avoid introducing information ambiguity to the model.
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