
applied
sciences

Article

Towards Robust Object Detection in Floor Plan Images: A Data
Augmentation Approach

Shashank Mishra 1 , Khurram Azeem Hashmi 1,2,3,* , Alain Pagani 3, Marcus Liwicki 4 , Didier Stricker 1,3

and Muhammad Zeshan Afzal 1,2,3*

����������
�������

Citation: Mishra, S.; Hashmi, K.A.;

Pagani, A.; Liwicki, M.; Stricker, D.;

Afzal, M.Z. Towards Robust Object

Detection in Floor Plan Images: A

Data Augmentation Approach. Appl.

Sci. 2021, 11, 11174. https://doi.org/

10.3390/app112311174

Academic Editor: Mauro Lo Brutto

Received: 5 October 2021

Accepted: 22 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany;
s_mishra19@cs.uni-kl.de (S.M.); didier.stricker@dfki.de (D.S.)

2 Mindgarage, Department of Computer Science, Technical University of Kaiserslautern,
67663 Kaiserslautern, Germany

3 German Research Institute for Artificial Intelligence (DFKI), 67663 Kaiserslautern, Germany;
alain.pagani@dfki.de

4 Department of Computer Science, Luleå University of Technology, 971 87 Luleå, Sweden;
marcus.liwicki@ltu.se

* Correspondence: khurram_azeem.hashmi@dfki.de (K.A.H.); muhammad_zeshan.afzal@dfki.de (M.Z.A.)

Abstract: Object detection is one of the most critical tasks in the field of Computer vision. This task
comprises identifying and localizing an object in the image. Architectural floor plans represent the
layout of buildings and apartments. The floor plans consist of walls, windows, stairs, and other
furniture objects. While recognizing floor plan objects is straightforward for humans, automatically
processing floor plans and recognizing objects is challenging. In this work, we investigate the
performance of the recently introduced Cascade Mask R-CNN network to solve object detection in
floor plan images. Furthermore, we experimentally establish that deformable convolution works
better than conventional convolutions in the proposed framework. Prior datasets for object detection
in floor plan images are either publicly unavailable or contain few samples. We introduce SFPI, a
novel synthetic floor plan dataset consisting of 10,000 images to address this issue. Our proposed
method conveniently exceeds the previous state-of-the-art results on the SESYD dataset with an mAP
of 98.1%. Moreover, it sets impressive baseline results on our novel SFPI dataset with an mAP of
99.8%. We believe that introducing the modern dataset enables the researcher to enhance the research
in this domain.

Keywords: object detection; Cascade Mask R-CNN; floor plan images; deep learning; transfer learning;
dataset augmentation; computer vision

1. Introduction

Object detection is one of the most elementary and essential tasks in the field of
computer vision. In object detection, we deal with the identification and localization of
objects present in the image or video [1,2]. Architectural floor plans contain both structural
and semantic information, e.g., room size, type, location of doors, walls, and furniture [3].
Object detection in floor plan images is an integral step in the field of floor plan analy-
sis. Due to the intricate nature of floor plan images, it is challenging to interpret their
semantic meaning. Moreover, there is an inherent relationship between the room types and
furniture objects, walls, and windows. For instance, the kitchen only contains a limited
set of furniture objects. Floor plan images have several applications, such as CAD model
generation [4], 3D model creation for interactive walkthroughs [5] or similarity search [6].
We present a couple of floor plan images with different information to understand the
semantics of floor plan layouts. Figure 1 illustrates information about different rooms and
their sizes in the floor plan. In Figure 1, the top left room is marked as a kitchen where
the dining table is present. The room next to this is identified as the living room, where

Appl. Sci. 2021, 11, 11174. https://doi.org/10.3390/app112311174 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2882-2789
https://orcid.org/0000-0003-0456-6493
https://orcid.org/0000-0003-4029-6574
https://orcid.org/0000-0002-0536-6867
https://doi.org/10.3390/app112311174
https://doi.org/10.3390/app112311174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112311174
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112311174?type=check_update&version=1

Appl. Sci. 2021, 11, 11174 2 of 22

various sofa objects are present. Similarly, additional rooms are identified with different
furniture objects. This type of floor plan is useful for interactive furniture fitting [5].

Figure 1. Sample floor plan image with the specification of different room sizes and furniture objects.
Each variety of floor plan layout has different floor plan elements, shapes, and sizes.

In Figure 2, the top left room contains a coffee table and a sink, whereas the bottom
left room contains a chair and sofa. Similarly, the remaining rooms have other furniture
objects. Contrarily to Figure 1, apart from the localization of furniture object, no other
information is available in Figure 2. Identifying the furniture objects present in a floor plan
image enables us to distinguish the type of room, i.e., kitchen, living room, and so on. We
also have a few common elements like furniture objects, walls, windows, and doors. These
are some common artifacts that exist in every floor plan image [3]. Identifying the floor
plan objects is the preliminary step towards the analysis of the floor plan images. Our main
work focuses on this preliminary step to detect the furniture objects, doors, and windows
in the floor plan images. Detecting these objects is difficult due to the variety of floor
plan layouts available. Furthermore, individual furniture objects are not always similar,
i.e., we can have multiple types of chairs and windows in a floor plan image. One of the
critical ideas of our research is to create an end-to-end trainable framework that can handle
different varieties of furniture objects and generalize well. In order to develop a robust
learning-based model, we need a large-scale dataset that should include different varieties
of floor plan layouts and furniture objects.

There exist only a few publicly available datasets for floor plan images [4,7,8]. Be-
sides fewer samples, less variation in floor plan layouts and furniture objects are also
a concern for the floor plan datasets. It is challenging to train deep detectors using the
currently available floor plan datasets. We have created our custom dataset to fill this
gap, containing 10,000 images with various floor plans and furniture objects. This dataset
will be available publicly for further enhancement and experiments. Figure 3 represents a
floor plan where all furniture objects are masked and highlighted based on the bounding
box information and corresponding class labels that are present in the ground truth of the
SESYD dataset [3].

Appl. Sci. 2021, 11, 11174 3 of 22

Figure 2. Sample floor plan image from SESYD [3] dataset containing various furniture object
classes in different rooms. For example, blue boxes represent sink class, whereas red boxes highlight
table class.

Figure 3. Sample floor plan image with ground truth. Various furniture class objects available in the
image are highlighted.

Appl. Sci. 2021, 11, 11174 4 of 22

Although object detection algorithms have been applied before on floor plan im-
ages [9–11], most of them employ Faster R-CNN [12], YOLO [13] or other pattern match-
ing algorithms [14]. Contrarily, we propose a framework that operates Cascaded Mask
R-CNN [15] for object detection in floor plan images. We employ both conventional con-
volution and deformable convolutional networks (DCN) [16] on the backbone network
and compare the performance, comparing them with baseline methods. This paper presents
an end-to-end approach for object detection in floor plan images. The main contributions
of this paper are as follows:

1. We present an end-to-end trainable framework that works on Cascade Mask R-
CNN [15] with conventional and deformable [16] convolutional backbone network to
detect various objects in floor plan images.

2. We publish SFPI (Synthetic Floor Plan Images), a novel floor plan dataset comprising
10,000 images. This dataset includes ten different floor plan layouts and 16 different
classes of furniture objects. The dataset is available here https://cloud.dfki.de/
owncloud/index.php/s/mkg5HBBntRbNo8X (accessed on 5 October 2021).

3. Our proposed method accomplishes state-of-the-art results on the publicly avail-
able SESYD dataset [3] and establishes impressive baseline results for the newly
proposed dataset.

The rest of the paper is organized as follows. In Section 2, we describe the literature
survey in the field of floor plan image object detection. Section 3 discusses the architecture
of our proposed model. We discuss the architecture of Cascade Mask R-CNN [15], our
backbone network [17], and deformable convolutions [16]. In Section 4, we talk about exist-
ing datasets and problems related to these datasets. Then, we analyze the peculiarities of
our custom floor plan dataset. In Section 5, we explain our implementation configurations
and different experiments. We also evaluate the results of these experiments and compare
them with the previous state-of-the-art results. Our conclusions and pointers for future
work are explained in Section 6.

2. Related Work

Recent advancements in deep learning methodologies [14,17–21] have significantly
affected the computer vision approaches like object detection [12,15]. We have quite a few
detectors available as per the orientation of specific tasks. In one of the recent works [10],
the authors extract structural information from floor plan images to estimate the size of
the rooms for interactive furniture fitting. In order to achieve this, first wall segmentation
is carried out using a fully convolutional neural network; afterward, they detect objects
using a Faster R-CNN, and finally, they perform optical character recognition to detect
dimensions of a different room. Faster R-CNN was the main detector used for object
detection in floor plan images. In [22], the authors address the floor plans with different
notations. They use segmentation of walls, doors, and windows to understand the floor
plan images better. They tested on publicly available dataset CVC-FP [7], which contains
four different floor plans. It is good to have different floor plans in our dataset as this
creates a variety of images and improves the performance of our model.

In [23], the authors presented a table detection framework from scanned document
images based on Cascade Mask R-CNN [15]. The authors used recursive feature pyramid
network and switchable atrous convolution to obtain a comparable result without relying
on pre-and post-processing methods and heavier backbone networks. The presented work
achieves state-of-the-art results on publicly available table detection datasets. In another
work [24], the authors used Cascade Mask R-CNN [15] for detecting formulas in scanned
document images. The authors used dual backbone of ResNeXt-101 [17] with deformable
convolution to achieve higher detection accuracy.

In [25], the authors proposed a powerful backbone named composite backbone net-
work. This backbone assembles multiple identical backbones by composite connections
between the parallel stages of the adjacent backbones. It feeds the output of the previous
backbone as input to the succeeding backbone. This composite backbone combined Cas-

https://cloud.dfki.de/owncloud/index.php/s/mkg5HBBntRbNo8X
https://cloud.dfki.de/owncloud/index.php/s/mkg5HBBntRbNo8X

Appl. Sci. 2021, 11, 11174 5 of 22

cade Mask R-CNN [15] was able to achieve results better than state-of-the-art for object
detection in dataset COCO [26]. This shows that Cascade Mask R-CNN [15] is amongst one
of the best performing networks in object detection. In another work [27], the author used
different detectors to improve robotic vision and probability object detection in real-life
scenarios. Gamma correction and data augmentation were applied to deal with the large
brightness variation in day and night. Moreover, a virtual dataset was used to increase
the richness of surrounding conditions. From the results, it is evident that Cascade Mask
R-CNN [15] performs better than its predecessors.

In [28], the authors presented an approach to detect aero-engine blade damage. Aero-
engine blades affect the performance and safety of an aircraft. It is important to detect
and identify the damages to these blades intelligently. The authors used Cascade Mask
R-CNN [15] and improved it further in order to accomplish an accuracy rate of 98.81%.
Further comparison with other detectors was also part of their study. In [29], the authors
proposed a framework for high-quality segmentation and object detection in remote sens-
ing imagery. Cascade Mask R-CNN [15] was used with max-batch soft IoU for object
identification and instance segmentation. The authors employed IoU as a loss function
to solve the mismatch issue between the loss function and the evaluation metric. In [30],
the authors presented a network to understand assembly instruction like furniture assem-
bly. There are several components in furniture assembly instructions, such as furniture
parts, mechanical connectors, symbols, and numbers. The authors used Cascade Mask
R-CNN [15] and developed a context-aware data augmentations scheme for speech bubble
segmentation that combines image cuts by considering the context of assembly instructions.

In [31], the author attempted to parse floor plan images using deep learning detectors.
The author used Cascade Mask R-CNN [15] to extract the information from a floor plan
image and used keypoint-CNN in segmentation to find precise locations of corners, which
is further combined in the post-processing step to give the resulting segmentation. In [32],
the authors attempt to synthesize a textual description from a floor plan image. This is
another good application for floor plan analysis. This can help visually impaired people to
imagine the interiors of the house, and it is also helpful for potential buyers of the house
who are located far. The authors detect walls by performing morphological closure on
the input floor plan image; doors are detected using the scale-invariant feature, and then
connected components are identified using the flood fill technique. Once this information
was available, then text processing was applied.

In another work presented by Zeng et al. [33], the authors proposed a method for floor
plan recognition, with a focus on recognizing diverse floor plan elements, e.g., walls, doors,
rooms, and furniture. The authors used a shared VGG [34] encoder to extract features from
the input floor plan images. It detects the room-boundary for walls, windows, and doors.
It also detects the room type based on the elements in the room. The number of furniture
items used to identify the room type is less. However, the authors get good results in
detecting walls, windows, and doors.

In one of the recent works on floor plans, the authors [11] created a framework for floor
plan recognition and reconstruction. The authors used text detection as well as symbol
detection to identify room types. Symbol detection is identifying different furniture objects
available in the room and, based on it, determining the type of the room. The authors
use YOLO4 [35] as a base network for identifying symbols in different rooms. This is also
supported by the information from the text detection. Once all the required information
is present, vectorization is performed on the floor plan images to reconstruct a new floor
plan image.

In [10], the authors presented a method to detect the elements in the floor plan
images, wall, and windows, as well as to determine the text from floor plan images.
The authors used a fully convolutional network (FCN) and optical character recognition
(OCR) technique. Experiments were performed on CVC-FP [7] and self-collected datasets.
The experiments performed on the datasets were: wall segmentation, object detection,
and text recognition. Although promising wall segmentation was reported, the number

Appl. Sci. 2021, 11, 11174 6 of 22

of testing samples to evaluate the object detection and text recognition performance was
relatively low.

Another work for object detection in floor plan images was done by Ziran et al. [9],
where the authors analyzed different available datasets in the floor plan domain and
created their own custom datasets. They used Faster R-CNN [12] with ResNet-101 [19] as
backbone for detecting furniture objects in the floor plan images. The custom dataset used
in this experiment has fewer furniture class objects and fewer samples. Thus, the work
does not provide conclusive empirical evidence to verify the effectiveness of the proposed
method. From the results, we can identify that the network, which was pre-trained on
COCO [26] dataset, performs well.

Based on all these works, we can identify that furniture object detection is the pre-
liminary step in processing floor plan images irrespective of the application. Whether we
want to generate some text-based synthesis for floor plan images or we want to reconstruct
the floor plan images, we must identify the objects available in different rooms of the floor
plan and identify doors and windows correctly. Our work mainly focuses on identifying
the furniture objects, windows, and walls in floor plan images, creating a base for all the
applications mentioned above.

3. Method

The presented approach is based on Cascade Mask R-CNN [15] equipped with back-
bone ResNeXt-101 [17]. We have implemented this model with conventional convolutional
networks (CNN) as well as deformable convolutional networks (DCN) [16]. The Figure
illustrates the complete pipeline of our proposed framework. In this section, we dive deep
into the individual components of our proposed method.

3.1. Cascade Mask R-CNN

Cascade Mask R-CNN [15] was introduced by Cai and Vasconcelos, which is a multi-
stage extension of Faster R-CNN [12]. Cascade Mask R-CNN [15] has a similar architecture
as Faster R-CNN, but along with an additional segmentation branch, which is denoted as
’S’ in Figure 4, for creating masks of the detected objects. Figure 4 shows that the input
image is passed through the ResNeXt-101 [17] backbone, which is explained in Section 3.2.
The backbone extracts the spatial features from the images and generates feature maps.
The possible candidate regions where furniture objects might be present in the images are
estimated by the region proposal network (RPN) head. These proposals are passed through
the ROI pooling layer. The network head takes ROI features as input and makes two
predictions: classification score (C) and bounding box regression (B). All three bounding
box modules perform classification and regression. The output of one bounding box head
is used as training input for the next head. These deeper detector stages are more selective
against false positives even at higher IoU thresholds. Each regressor is optimized for
the bounding box distribution generated by the previous regressor rather than the initial
distribution. We get a bounding box of higher IoU thresholds when we train the bounding
box regressor for a certain IoU threshold. We get refined bounding boxes and classification
scores from B3, and the segmentation head predicts the mask that contributes to the loss
function to optimize the training further.

Appl. Sci. 2021, 11, 11174 7 of 22

ResNeXt-101 with
conventional/deformable

convolution
FPN

Network

RPN Network

H1 H2 H3

C1 C2 C3B1 B2 B3S

Po
ol

Po
ol

Po
ol

Feature Map

Proposals

Input Floor Plan Image Output Floor Plan Image;
identified furniture classes

C Classification B Bouding box S Segmentation H Network Head

Figure 4. The presented framework is based on Cascade Mask R-CNN [15] equipped with ResNeXt-101 [17] backbone with
conventional and deformable convolution applied on floor plan images. Modules B, C, and S represent bounding box,
classification, and segmentation, respectively.

3.2. Backbone Network

We employ ResNeXt-101 [17] as backbone for our experiment. ResNeXt-101 [17] uses
cardinality features as compared to its previous version, ResNets [19]. In ResNeXt, a layer
is shown as the number of in channels, filter size, and the number of out channels. This
network stacks residual blocks. These blocks are subject to two simple rules: (i) if the same
size spatial maps are produced, the blocks share the same hyperparameters, and (ii) every
time when the spatial map is downsampled by a factor of 2, the width of the blocks is
multiplied by a factor of 2. This ensures consistency in computation complexity in terms
of FLOPs. In an artificial neural network, neurons perform inner product, which can be
thought of as a form of aggregating transformation:

D

∑
i=1

wixi (1)

where x is the D-channel input vector to neuron and wi is a filter’s weight for the i-th
channel. This has been updated in the ResNeXt [17] architecture with a more generic
function, which can be a network in itself. Aggregated transformations are represented as:

f (x) =
C

∑
i=1

τi(x) (2)

where τi(x) can be an arbitrary function that projects x into an (optionally lower dimension)
embedding and then transforms it. The C is the size of transformations to be aggregated,
referred to as cardinality. In Equation (2), C looks the same as D in Equation (1), but C
needs not equal D and can be an arbitrary number. This aggregated transformation serves
as the residual function:

y = x +
C

∑
i=1

τi(x) (3)

where y is the output which is then further propagated to the region proposal network of
our Cascade Mask R-CNN as explained in Figure 4.

3.3. Deformable Convolution

Apart from conventional convolution available in ResNeXt-101 [17], we incorporate
deformable convolution filters [16]. A convolutional neural network uses local connections
to extract spatial information effectively and shared weights. Convolutional layers at higher
levels identify complete objects, whereas layers at the bottom look for fine features like
edges and corners of the gradients. In standard 2D convolution, we apply 2D filter/kernels

Appl. Sci. 2021, 11, 11174 8 of 22

over the input at the fixed receptive field and spatial locations to generate the output
feature map. The output feature map is generated by a convolution operation between
kernel w and the input x, which can be formulated as y = w× x and every element in
feature map y can be calculated as:

y(p0) = ∑
pi∈C

w(pi).x(p0 + pi) (4)

where p0 is the center location of the sample in the input, and pi enumerates the points in
the collection of sampling points. Because different locations in the input feature maps
may correspond to objects with different scales or deformation, adaptive determination of
receptive field sizes is desirable for certain tasks.

Deformable convolution has a learnable shape to adapt to changes in features; this
is explained in Figure 5. Deformable convolution makes the sampling matrix learnable,
allowing the shape of the kernel to adapt to the unknown complex transformations in
the input. Instead of using the fixed sampling matrix with fixed offsets, as in standard
convolution, the deformable convolution learns the sampling matrix with location offsets.
The offsets are learned from the preceding feature maps via additional convolutional layers.
Thus, the deformation is conditioned on the input features in a local, dense, and adaptive
manner. To put this into the equation, in deformable convolution, the regular sampling
matrix C is augmented with offsets4pi|n = 1, . . . , n, where N = |C|. Equation (4) becomes:

y(p0) = ∑
pi∈C

w(pi).x(p0 + pi +4p1) (5)

where p0 is the center location of the sample in the input, and p1 enumerates the points
in the collection C of sampling/offset points. Now the sampling is on the irregular and
offsets locations pi +4pi.

Figure 5. Internal working of deformable convolution [16]. The light green grid on the input feature
map shows the conventional 3× 3 convolutional operation, whereas the blue boxes on the input
feature map show the effective receptive field of a 3× 3 deformable convolution.

4. Dataset

The prior literature on floor plan images reflects that there is a scarcity of datasets
in this area. SESYD [3], CVC-FP [7], and ROBIN [8] are the 3 most widely used publicly
available datasets in this area. SESYD [3] contains synthetic floor plan images with furniture
objects placed in different rooms randomly. It has 10-floor plan layouts and, in total,
contains 1000 images. Although this idea is fascinating to put furniture objects randomly,
the overall number of images is less. It has 16 different furniture classes.

In the CVC-FP [7] dataset, we only have 122-floor plan images. These floor plan
images are distributed amongst four different floor plan layouts. Overall, the total number

Appl. Sci. 2021, 11, 11174 9 of 22

of furniture classes is also less and limited to 4 classes. This dataset is not suitable for the
training of the deep neural network [20].

In the ROBIN [8] dataset, we have different hand-drawn as well as synthetically
generated images. In this dataset also, we have only a limited number of images 510. Floor
plan layouts and furniture object classes are also limited.

To train a deep detector, we need a dataset with sufficient images and variety in the
floor plan layouts to generalize the network for realistic images. Moreover, the number of
furniture classes should be large enough to identify different varieties of furniture objects.
To address this, we create our custom dataset, which is based on the SESYD [3] dataset. We
named our custom dataset SFPI (Synthetic Floor Plan Images). From this point onward, we
will describe our custom dataset with the name SFPI.

In Figure 6, we have a sample floor plan image from the SESYD [3] dataset. It has
various furniture objects present in different rooms. It is visible from the image that the
scale of different furniture classes among them is almost the same and rarely varies; we
observed this behavior in the full dataset as well. It is also noticeable that the orientation of
different furniture objects also does not vary a lot. Moreover, we observe that few furniture
objects are available in specific rooms, which is good if we want to identify room types
but not for our purpose of detecting furniture objects. We want to generalize the model so
that it can identify the objects available in any room. Keeping all these shortcomings of the
SESYD [3] dataset in mind, we propose our dataset SFPI.

Figure 6. Sample image from SESYD [3] dataset. Minimal variation in the furniture objects. It is
visible from the red highlighted objects of Table class that these objects do not vary in orientation
or scale.

Appl. Sci. 2021, 11, 11174 10 of 22

4.1. Dataset Creation

To generate the custom dataset SFPI, we took all floor plan layouts of SESYD [3] as the
base and implanted the furniture objects to create different floor plan images. To overcome
the shortcomings of SESYD [3], we take care of furniture object augmentations. The first
augmentation we apply is rotation; we assign rotation randomly on furniture class objects.
In this way, some objects will undergo rotation, and some will be the same as the original
model. We use random angle choices between [0, 30, 45, 60, 75, 90, 120, 150, 180, 210, 250,
270, 300, 330] degrees and rotate the image from its center. Figure 7 depicts the example of
this augmentation; Sofa and Tub furniture class objects have different orientations based
on randomly selected angels. Another augmentation choice we employ is scaling; this is
an important step to ensure that the model generalizes well to identify natural furniture
objects. We enforce scaling randomly to have both scaled and non-scaled furniture class
objects in the same image. For scaling, we use a random resize factor between [40, 60,
75, 85, 100, 130, 145, 160, 185, 200] and scale the objects using this. We use the inter-are
option for interpolation while resizing the objects. While resizing, we make sure to keep
the original aspect ratio of the objects intact. In Figure 7, we have different scaling for bed
and sofa objects of respective furniture classes.

Figure 7. Sample image from the proposed SFPI dataset. Furniture object’s augmentation is evident,
i.e., highlighted Tub and Sofa classes have a couple of objects with different orientations and scales.

4.2. SFPI Statistics

Our SFPI dataset has ten different floor plan layouts and 16 different furniture classes,
including armchair, bed, door1, door2, sink1, sink2, sink3, sink4, sofa1, sofa2, table1, table2,

Appl. Sci. 2021, 11, 11174 11 of 22

table3, tub, window1, window2. We also have multiple variants of the same class type to
cover different varieties of furniture objects. It helps in generalizing the model for a more
realistic output. We have created 10,000 images. Each floor plan layout has 1000 images.
Overall, we have 316,160 objects of different furniture classes across these 10,000 images.
Figure 8 illustrates the furniture class distribution of our SFPI dataset.

Figure 8. The distribution of different furniture class objects in the SFPI dataset.

Figure 8 depicts that doors and windows classes have the highest number of objects in
the dataset. This is natural because, in each floor plan, the number of doors and windows is
always higher than other individual furniture objects. We can identify that, at a minimum,
we have around 5000 representations of any class in our SFPI dataset.

Table 1 explains the image distribution we use for training and testing our model.
While working on the original SESYD [3] dataset, we take 700 images for training and
150 images for both validation and testing. A total of 20,670 different furniture objects
are available in these 1000 images. While working on our custom dataset SFPI, we use
the same 70-30 rule for splitting. We used 7000 images for training and 1500 images for
both validation and testing. Now, as the number of images is increased, we have more
furniture objects available. We performed multiple experiments using these two datasets;
all information related to these experiments is available in Section 5.

Table 1. Statistical comparison between SESYD [3] and the proposed SFPI datasets. The distribution
of images to train our base model on both datasets.

Dataset Objects Train Val Test

SESYD [3] 20,670 700 150 150

SFPI 316,160 7000 1500 1500

5. Experimental Results
5.1. Implementation Details

We implement the proposed method using PyTorch and MMDetection’s object detec-
tion pipeline [36]. Our backbone ResNeXt-101 [17] is pre-trained on MS-COCO dataset [26].
Using this pre-trained feature extraction backbone helps our architecture to adapt from
the domain of natural scenes to floor plan images. We scale our input floor plan images
to 1333× 800, keeping the original aspect ratio. For efficient execution [21] on our setup
we use a batch size of one to train our network. The initial learning rate for training is
0.0025. We train the network for 12 iterations on our SFPI dataset. The IoU threshold value
for cascaded bounding boxes is set to [0.5, 0.6, 0.7]. We use three different anchor rations
of [0.5, 1.0, 2.0] and strides of [4, 8, 16, 32, 64] and with only one anchor scale of [8] since

Appl. Sci. 2021, 11, 11174 12 of 22

FPN [37] itself performs multiscale detection because of its top-down architecture. We use
Cross-Entropy loss for calculating network losses. Furthermore, we apply both traditional
convolution and DCN [16] backbone networks for different experiments. However, overall
experiment settings for both are the same, apart from the choices of datasets. We trained
on GeForce GTX 1080 GPU [38] in coordination with 4 CPUs and with 25 GB memory.

5.2. Evaluation Criteria

As this is an object detection problem, we use the detection evaluation matrix of
COCO [26]. The employed evaluation metrics are explained as follows:

5.2.1. Intersection over Union

Intersection over Union (IoU) [39] is defined as the area of the intersection divided by
the area of the union of a predicted bounding box (Bp) and a ground-truth box (Bgt):

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
(6)

IoU is used as a criterion that determines whether detection is a true positive or a
false positive.

5.2.2. Average Precision

Average precision [40] is based on the precision–recall curve. It is useful when we
are comparing different detectors and the precision–recall curves intersect with each other.
AP can be defined as the area under the interpolated precision-recall curve, which can be
calculated using the following formula:

AP =
n−1

∑
i=1

(ri+1 − ri)pinterp(ri+1) (7)

where r1, r2, . . . , rn are the recall levels at which the precision is first interpolated.

5.2.3. mAP

The calculation of AP only involves one class. However, in object detection, there are
usually K > 1 classes. Mean average precision (mAP) [26] is defined as the mean of AP
across all K classes:

mAP =
∑K

i=1 APi

K
(8)

5.2.4. Average Recall

Average recall (AR) [40] like AP can be used to compare detector performance. AR
is the recall averaged over all IoU ∈ [0.5, 1.0] and can be computed as two times the area
under the recall-IoU curve:

AR = 2
∫ 1

0.5
recall(o)do (9)

where o is IoU and recall(o) is the corresponding recall. For the COCO dataset, AR metric
is calculated on a per-class basis, like AP.

5.2.5. Mean Average Recall (mAR)

Mean average recall [26] is defined as the mean of AR across all K classes:

mAR =
∑K

i=1 ARi

K
(10)

Appl. Sci. 2021, 11, 11174 13 of 22

5.3. Results and Discussion

We validate our proposed framework on both the SESYD [3] and the SFPI dataset
to demonstrate its effectiveness. In this section, we will discuss the quantitative and
qualitative performance of our approach. We will discuss the strength and weaknesses of
our model. Furthermore, we will compare our results with current state-of-the-art methods.

5.3.1. SESYD

For this dataset, we use a split of 70-30 as mentioned in Section 4. We use 700 random
images out of 1000 for training the network, and from the remaining images, 150 for test and
150 for validation. We follow the evaluation protocol of COCO [26] performance metrics.

All models mentioned in Table 2 are pre-trained on COCO [26] dataset. In the original
dataset, where we have only 1000 images, our model can achieve good accuracy. We are
able to achieve a 0.982 mAP score and 0.987 mAR score. We can not compare the result of
Ziran et al. [9] directly with our results, as those experiments were performed on a different
dataset, and they are not publicly available. However, from the domain perspective of
furniture object detection, we can compare the methods. We can recognize that Cascade
Mask R-CNN [15] outperforms the Faster R-CNN [12] used by Ziran et al. [9].

Table 2. Quantitative analysis of our model with existing state-of-the-art methods.

Mean Average Precision (mAP) Mean Average Recall (mAR)

Model_Dataset Objects Val Test Val Test

Our_SESYD 20,670 0.981 0.982 0.986 0.987

Ziran et al. [9]—d1 1111 - 0.31 - 0.60

Ziran et al. [9]—d2 1111 - 0.39 - 0.69

5.3.2. SFPI Dataset

We perform multiple experiments with the SFPI dataset by dividing the dataset
in different ways. Before we dive deeper into different experiments and their details,
first, we lay down some experiment labels for better understanding in Table 3. These
labels will be used throughout the paper. In general, the used naming convention is
model_dataset_train_dataset_ test.

Table 3. Explanation of different experiments and dataset associated with it.

Experiment Label Train Val Test

Experiment-1 Our_SFPI_train_test SFPI SFPI SFPI

Experiment-2 Our_SFPI_train_SESYD_test SFPI SESYD [3] SESYD [3]

Experiment-3 Our_SFPI_SESYD_train_SESYD_test SFPI + SESYD [3] SESYD [3] SESYD [3]

In our SFPI dataset, we have 10,000 images to perform experiments. First, we will
present the results between the SESYD [3] dataset and our SFPI dataset in Table 4.

Table 4. Quantitative analysis of our proposed model on SESYD [3] dataset and SFPI dataset.

Mean Average Precision
(mAP)

Mean Average Recall
(mAR)

Method Object Val Test Val Test

Our_SESYD_train_test 20,670 0.981 0.982 0.986 0.987

Our_SFPI_train_test 316,160 0.995 0.995 0.997 0.997

Appl. Sci. 2021, 11, 11174 14 of 22

For our SFPI dataset, we followed the 70-15-15 rule to split the dataset. We take
7000 images for training and 1500 images for validation and testing. With the number of
increased images and objects, we can see the improvement in the results of our proposed
model. We achieve a 0.995 mAP score and 0.997 mAR score. This clearly shows that our
model performs better on the SFPI dataset where we have sufficient images to train a model
as compared to less number of images we have in SESYD [3].

We further execute more experiments, including the SFPI and SESYD [3] datasets,
to get more generalized results from our end-to-end model.

In the second experiment Our_SFPI_train_SESYD_test mentioned in Table 5, we use
the full SFPI dataset for training, which means all 10,000 images are used to train our
end-to-end model. We use the SESYD [3] dataset for validation and testing. We perform
a random split on the SESYD [3] dataset and use 500 images for validation and 500 for
testing. In this way, we can compare how our network performs with a generalized dataset.
Moreover, we can establish similarities and dissimilarities between our SFPI dataset and
the SESYD [3] dataset. We can achieve good results in this experiment if we compare it to
the results of Ziran et al. [9].

Table 5. Quantitative analysis of different experiments performed on our proposed model.

Mean Average
Precision (mAP)

Mean Average
Recall (mAR)

Method Object Val Test Val Test

Our_SESYD_train_test 20,670 0.981 0.982 0.986 0.987

Our_SFPI_train_test 316,160 0.995 0.995 0.997 0.997

Our_SFPI_train_SESYD_test 336,830 0.751 0.750 0.775 0.775

Our_SFPI_SESYD_train_SESYD_test 336,830 0.997 0.997 0.998 0.998

Figure 9 is the output of the experiment Our_SFPI_train_SESYD_test. Few classes are
misclassified; for the most part, the network confuses between armchair, sofa, and bed
classes. We see many instances where sofa or armchair classes are recognized as the bed.
This might be because of the data augmentation we put in the SFPI dataset, whereas in
SESYD [3] furniture objects are not that much augmented, and in some scenarios sofa
and armchair resembles a bed. To improve the results, we perform our next experiment,
Our_SFPI_SESYD_train_SESYD_test, where we use close domain fine-tuning. In Close
domain fine-tuning, we fine-tune models using datasets that are closer to the domain of
our problem rather than using natural images, which we do when we apply fine-tuning.

In our next experiment Our_SFPI_SESYD_train_SESYD_test, we combine both the
SFPI dataset and the SESYD [3] dataset. For training, we use 10,500 images, out of which
10,000 images are from the SFPI dataset, and we pick 500 random images from SESYD [3]
dataset. Out of the remaining 500 images of the SESYD [3] dataset, 250 are used for
validation, and 250 are used for testing. With the close domain fine-tuning, our model
improves, and we get better results. We can achieve a 0.997 mAP score and 0.998 mAR
score, which is even better than our experiment Our_SESYD_train_test, where we used
the SFPI dataset only for training, validation, and testing. This indicates the advantages of
using closed domain fine-tuning.

Appl. Sci. 2021, 11, 11174 15 of 22

Figure 9. Qualitative results of our proposed model from experiment Our_SFPI_train_SESYD_test.
Many miss-classified classes are visible in the image, such as Bed and Sofa.

Figure 10 is the final output of our proposed model in the case of experiment Our_SFPI_
SESYD_train_SESYD_test. The image shows that all furniture objects are correctly classified
with a good confidence score. In image Figure 10 we can observe good furniture augmenta-
tion, as discussed earlier. Our proposed model can generalize well given the context of the
two datasets SFPI and SESYD [3] object detection and localization worked perfectly.

Appl. Sci. 2021, 11, 11174 16 of 22

Figure 10. Sample output from experiment Our_SFPI_SESYD_train_SESYD_test. It is evident that all furniture objects are
identified and localized correctly.

In Table 6, we described the class-wise average precision score achieved in our ex-
periment Our_SFPI_SESYD_train_SESYD_test. It is visible from the Table 6 that for few
classes, we have reached the average precision of one like Door, Bed, and Tub, whereas for
the other remaining classes, the score is high, and except Window1 class, all other classes
already reached above 0.90 average precision. This class-wise AP result gives us more
clarity about model performance. We can identify where our model works well and what
classes are causing problems.

For completeness of the paper, we computed the mAP score on various IoU thresholds
ranging from 0.5 to 1.0. We performed this for all of our three experiments. Figure 11
illustrates the performance of our approach in terms of mean average precision. We can
see that we can achieve mAP score of one for Our_SESYD_train_test, 0.861 in the case of
Our_SFPI_train_SESYD_test, and 0.936 for Our_SFPI_SESYD_train_SESYD_test when the
IoU is set to 0.5. From this point onwards, as we increase, the IoU mAP is decreasing for
the latter mentioned two experiments. For experiment Our_SFPI_train_SESYD_test and
experiment Our_SFPI_SESYD_train_SESYD_after the IoU threshold of 0.8, mAP is equal.
The mAP score eventually reaches zero when we set the IoU to 1 for all experiments.

Appl. Sci. 2021, 11, 11174 17 of 22

Table 6. Class-wise average precision (AP) from Our_SFPI_SESYD_train_SESYD_test experiment
results. Few classes have reached the score of one, whereas there is some space for improvement in
other classes.

Category AP Category AP Category AP

Armchair 0.998 Bed 1.000 Door1 1.000

Door2 1.000 Sink1 0.997 Sink2 0.994

Sink3 0.994 Sink4 0.999 Sofa1 0.997

Sofa2 0.996 Table1 0.999 Table2 0.996

Table3 1.000 Tub 1.000 Window1 0.987

Window2 0.994 - - - -

0.5 0.6 0.7 0.8 0.9 1.0
IoU Threshold

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
Av

er
ag

e
Pr

ec
is

io
n

Our_SFPI_train_test_CNN
Our_SFPI_train_SESYD_test_CNN
Our_SFPI_SESYD_train_SESYD_test_CNN

Figure 11. Mean Average Precision achieved over varying IoU thresholds for different experiments
on the proposed method with conventional convolution (CNN).

Until this point, we were only deploying conventional convolutional networks, but we
want to apply our model with deformable convolution network (DCN) [16] as well.
DCN [16] could be useful for our datasets as they can easily adapt the shape of unknown
complex transformations in the input. DCN’s [16] are helpful when we have huge data
augmentation in the dataset, to identify different transformations of the same objects. We
performed all three experiments with backbone ResNeXt-101 [17] along with deformable
convolutions [16]. All other specifications of the experiments such as dataset split and
Cascade Mask R-CNN [15] remain the same as they are for backbone ResNeXt-101 [17]
with traditional convolution (CNN).

In Table 7, we present the quantitative analysis of all experiments we have performed
with our end-to-end model. We can identify that using deformable convolution [16]
enhances the results of our model. In our experiment Our_SESYD_train_test with conven-
tional convolution (CNN), we can achieve a mAP of 0.995 and a mAR of 0.997, whereas
when we changed the backbone to use deformable convolution [16], the overall score
improved to 0.998 for mAP and 0.999 for mAR, which is close to the perfect score. For our
experiment, our_SFPI_train_SESYD_test, where we are using the SFPI dataset for training
and the SESYD [3] dataset for testing and validation, with CNN backbone, we get a score of
0.750 for mAP and 0.775 for mAR, whereas when we used a deformable convolution [16],
the score improved, and we obtained 0.763 for mAP and 0.783 for mAR. This indicates that

Appl. Sci. 2021, 11, 11174 18 of 22

deformable convolution can be helpful to get more generalized object detection. In our
experiment Our_SFPI_SESYD_train_SESYD_test, we performed closed domain fine-tuning
on our model and achieved our best result until now, which was a 0.997 score for mAP and
0.998 score for mAR. This further improves when we use a deformable convolution [16]
for closed domain fine-tuning; we achieved a score of 0.998 for mAP and 0.999 for mAR.
This is the best result among all experiments we performed on the SFPI dataset, as well as
other experiments we came across during the literature survey for object detection in floor
plan images.

Table 7. Performance analysis of the proposed model on different experiments performed with
conventional convolution (CNN) and deformable convolution (DCN) [16] backbone.

Mean Average
Precision (mAP)

Mean Average
Recall (mAR)

Method Type Val Test Val Test

Our_SESYD_train_test CNN 0.981 0.982 0.986 0.987

Our_SFPI_train_test
CNN 0.995 0.995 0.997 0.997

DCN [16] 0.998 0.998 0.999 0.999

Our_SFPI_train_SESYD_test
CNN 0.751 0.750 0.775 0.775

DCN [16] 0.768 0.763 0.788 0.783

Our_SFPI_SESYD_train_SESYD_test
CNN 0.997 0.997 0.998 0.998

DCN [16] 0.998 0.998 0.999 0.999

We perform all our experiments with backbone ResNeXt-101 [17] combining deformable
convolutions (DCN) [16] on different IoU thresholds. Figure 12 depicts the performance of
our model during each experiment on different IoU thresholds. Our_SFPI_train_test and
Our_SFPI_SESYD_train_SESYD_test result in the same mAP score, whereas for
Our_SFPI_train_SESYD_test, we start with a mAP score of 0.881 for 0.5 IoU threshold.
Our_SFPI_train_test and Our_SFPI_SESYD_train_SESYD_test gives a constant mAP score
until the IoU threshold 0.9, whereas we see a constant decrease in the mAP score of
Our_SFPI_train_SESYD_test. Eventually, all three experiments will end up on a mAP score
of zero when we set the IoU to 1. The final output of experiment Our_SFPI_SESYD_train_
SESYD_test_DCN is available in the Figure 13.

0.5 0.6 0.7 0.8 0.9 1.0
IoU Threshold

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
Av

er
ag

e
Pr

ec
is

io
n

Our_SFPI_train_test_DCN
Our_SFPI_train_SESYD_test_DCN
Our_SFPI_SESYD_train_SESYD_test_DCN

Figure 12. Mean Average Precision achieved over varying IoU thresholds for different experiments
on the proposed method with DCN [16].

Appl. Sci. 2021, 11, 11174 19 of 22

Figure 13. The qualitative result of our experiment Our_SFPI_SESYD_train_SESYD_test with de-
formable convolutions [16] on SFPI dataset.

We can take a better look at individual furniture classes with respective accuracy
in Table 8. Comparing this result Table 8 with the class-wise result we have obtained in
Table 6 improvements are clearly visible. Comparison of these two class-wise results is
available in Figure 14. The figure illustrates that scores for Sink2 and Sink3 furniture classes
have been improved. When we verify the images of these two classes, we can recognize
that these classes have many similarities, and using DCN helps our model differentiate and
recognize each class more precisely. We can also see the major improvement in Window1
and Window2 classes; these classes are also difficult to distinguish, and that is where we
take advantage of deformable convolution [16] to improve the overall score. In conclusion,
we can see that most of the furniture classes either have a score of one or close to one.

Appl. Sci. 2021, 11, 11174 20 of 22

Table 8. Class-wise average precision (AP) from the results of our experiment Our_SFPI
_SESYD_train_SESYD_test_ DCN.

Category AP Category AP Category AP

Armchair 0.997 Bed 1.000 Door1 1.000

Door2 1.000 Sink1 0.996 Sink2 0.997

Sink3 0.999 Sink4 1.000 Sofa1 0.999

Sofa2 0.999 Table1 1.000 Table2 0.998

Table3 1.000 Tub 1.000 Window1 0.994

Window2 0.995 - - - -

Figure 14. Class-wise average precision comparison Conventional Convolutional Network (CNN)
and Deformable convolutional Network (DCN) [16]. The results have been taken from experiments
Our_SFPI_SESYD_train_SESYD_test_CNN and Our_SFPI_SESYD_train_SESYD_test_ DCN.

6. Conclusions and Future Work

We introduce an end-to-end trainable network for detecting furniture objects in floor
plan images. Our proposed method incorporates the high-level architectural principle of
traditional object detection approaches. Specifically, we exploit and compare traditional
convolution and deformable convolution approaches to detect furniture objects in the floor
plan images using Cascade Mask R-CNN [15]. Our different experiments and modifications
will help to achieve better generalization and detection performance. We achieve state-of-
the-art performance on COCO primary challenge matrices (AP at IoU = 0.50:0.05:0.95) with
the mAP score of 0.998 on our SFPI dataset. With our proposed method, we achieved a mAP
score of 0.982 on the publicly available SESYD [3] dataset. Our literature survey identified
no significant public dataset available for floor plan images that can be used to train deep
learning detectors. We try filling this gap by creating a custom dataset SFPI containing
10,000 floor plan images with 316,160 object instances available in these images. There
are 16 different furniture classes and ten different floor plans. This dataset can be further
extended using our scripts and can quickly adapt to new furniture classes. Moreover,
the presented work empirically establishes that it is possible to achieve state-of-the-art
object detection in floor plan images.

For future work, we expect our SFPI dataset to be embedded with more floor plan
layouts and different furniture objects to make a more generalized floor plan dataset.

Appl. Sci. 2021, 11, 11174 21 of 22

A deeper backbone would be able to improve the performance without using deformable
convolution. Moreover, these experiments can be used in different floor plan applications
such as interactive image-fitting and floor plan text generation, helping visually impaired
people with floor plans. Earlier, all these applications used Faster R-CNN [12], but now
with our experiments, it is evident that Cascade Mask R-CNN [15] performs better in
these applications.

Author Contributions: Conceptualization, S.M. and K.A.H.; writing—original draft preparation,
S.M. and K.A.H.; writing—review and editing, S.M., K.A.H. and M.Z.A.; supervision and project
administration, M.L., A.P. and D.S. All authors have read and agreed to the submitted version of
the manuscript.

Funding: The work leading to this publication has been partially funded by the European project
INFINITY under Grant Agreement ID 883293.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kang, K.; Ouyang, W.; Li, H.; Wang, X. Object detection from video tubelets with convolutional neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 817–825.
2. Ahmed, M.; Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Survey and Performance Analysis of Deep Learning

Based Object Detection in Challenging Environments. Sensors 2021, 21, 5116. [CrossRef]
3. Delalandre, M.; Valveny, E.; Pridmore, T.; Karatzas, D. Generation of synthetic documents for performance evaluation of symbol

recognition & spotting systems. Int. J. Doc. Anal. Recognit. (IJDAR) 2010, 13, 187–207.
4. Gimenez, L.; Robert, S.; Suard, F.; Zreik, K. Automatic reconstruction of 3D building models from scanned 2D floor plans. Autom.

Constr. 2016, 63, 48–56. [CrossRef]
5. Gimenez, L.; Hippolyte, J.L.; Robert, S.; Suard, F.; Zreik, K. reconstruction of 3D building information models from 2D scanned

plans. J. Build. Eng. 2015, 2, 24–35. [CrossRef]
6. Ahmed, S.; Liwicki, M.; Weber, M.; Dengel, A. Automatic room detection and room labeling from architectural floor plans. In

Proceedings of the 2012 10th IAPR International Workshop on Document Analysis Systems, Gold Coast, QLD, Australia, 27–29
March 2012; pp. 339–343.

7. De las Heras, L.P.; Terrades, O.; Robles, S.; Síanchez, G. CVC-FP and SGT: A new database for structural floor plan analysis and
its groundtruthing tool. Int. J. Doc. Anal. Recognit. 2015, 18, 15–30. [CrossRef]

8. GitHub, I. Open Source Survey. 2017. Available online: https://github.com/gesstalt/ROBIN (accessed on 21 July 2021)
9. Ziran, Z.; Marinai, S. Object detection in floor plan images. In Lecture Notes in Computer Science, Proceedings of the IAPR Workshop on

Artificial Neural Networks in Pattern Recognition, Siena, Italy, 19–21 September 2018; Springer: Cham, Switzerland, 2018; pp. 383–394.
10. Dodge, S.; Xu, J.; Stenger, B. Parsing floor plan images. In Proceedings of the 2017 Fifteenth IAPR International Conference on

Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 358–361.
11. Lv, X.; Zhao, S.; Yu, X.; Zhao, B. Residential Floor Plan Recognition and Reconstruction. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021; pp. 16717–16726.
12. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]
13. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
14. Hurtik, P.; Števuliáková, P. Pattern matching: Overview, benchmark and comparison with F-transform general matching

algorithm. Soft Comput. 2017, 21, 3525–3536. [CrossRef]
15. Cai, Z.; Vasconcelos, N. Cascade R-CNN: High Quality Object Detection and Instance Segmentation. IEEE Trans. Pattern Anal.

Mach. Intell. 2019, 43, 1483–1498. [CrossRef] [PubMed]
16. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017.
17. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]

http://doi.org/10.3390/s21155116
http://dx.doi.org/10.1016/j.autcon.2015.12.008
http://dx.doi.org/10.1016/j.jobe.2015.04.002
http://dx.doi.org/10.1007/s10032-014-0236-5
https://github.com/gesstalt/ROBIN
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/s00500-017-2618-3
http://dx.doi.org/10.1109/TPAMI.2019.2956516
http://www.ncbi.nlm.nih.gov/pubmed/31794388
http://dx.doi.org/10.1145/3065386

Appl. Sci. 2021, 11, 11174 22 of 22

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

20. Zhang, C.L.; Xu, Y.P.; Xu, Z.J.; He, J.; Wang, J.; Adu, J.H. A fuzzy neural network based dynamic data allocation model on
heterogeneous multi-GPUs for large-scale computations. Int. J. Autom. Comput. 2018, 15, 181–193. [CrossRef]

21. Téllez-Velázquez, A.; Cruz-Barbosa, R. A CUDA-streams inference machine for non-singleton fuzzy systems. Concurr. Comput.
Pract. Exp. 2018, 30, e4382. [CrossRef]

22. De las Heras, L.P.; Ahmed, S.; Liwicki, M.; Valveny, E.; Sánchez, G. Statistical segmentation and structural recognition for floor
plan interpretation. Int. J. Doc. Anal. Recognit. (IJDAR) 2014, 17, 221–237. [CrossRef]

23. Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. CasTabDetectoRS: Cascade Network for Table Detection in
Document Images with Recursive Feature Pyramid and Switchable Atrous Convolution. J. Imaging 2021, 7, 214. [CrossRef]

24. Hashmi, K.A.; Pagani, A.; Liwicki, M.; Stricker, D.; Afzal, M.Z. Cascade Network with Deformable Composite Backbone for
Formula Detection in Scanned Document Images. Appl. Sci. 2021, 11, 7610. [CrossRef]

25. Liu, Y.; Wang, Y.; Wang, S.; Liang, T.; Zhao, Q.; Tang, Z.; Ling, H. Cbnet: A novel composite backbone network architecture for
object detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 11653–11660.

26. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Lecture Notes in Computer Science, Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12
September 2014; Springer: Cham, Switzerland, 2014; pp. 740–755.

27. Wang, C.W.; Cheng, C.A.; Cheng, C.J.; Hu, H.N.; Chu, H.K.; Sun, M. Augpod: Augmentation-oriented probabilistic object
detection. In Proceedings of the CVPR Workshop on the Robotic Vision Probabilistic Object Detection Challenge, Long Beach,
CA, USA, 17 June 2019.

28. He, W.; Li, C.; Nie, X.; Wei, X.; Li, Y.; Li, Y.; Luo, S. Recognition and detection of aero-engine blade damage based on Improved
Cascade Mask R-CNN. Appl. Opt. 2021, 60, 5124–5133. [CrossRef] [PubMed]

29. Kumar, D.; Zhang, X. Improving More Instance Segmentation and Better Object Detection in Remote Sensing Imagery Based on
Cascade Mask R-CNN. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
Brussels, Belgium, 11–16 July 2021; pp. 4672–4675.

30. Lee, J.; Lee, S.; Back, S.; Shin, S.; Lee, K. Object Detection for Understanding Assembly Instruction Using Context-aware Data
Augmentation and Cascade Mask R-CNN. arXiv 2021, arXiv:2101.02509.

31. Eklund, A. Cascade Mask R-CNN and Keypoint Detection used in Floorplan Parsing. Master’s Thesis, Uppsala University,
Uppsala, Sweden, 24 June 2020.

32. Goyal, S.; Chattopadhyay, C.; Bhatnagar, G. Plan2Text: A framework for describing building floor plan images from first person
perspective. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing Its Applications (CSPA), Penang,
Malaysia, 9–10 March 2018; pp. 35–40. [CrossRef]

33. Zeng, Z.; Li, X.; Yu, Y.K.; Fu, C.W. Deep Floor Plan Recognition Using a Multi-Task Network With Room-Boundary-Guided
Attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–
2 November 2019.

34. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
35. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
36. Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open mmlab detection

toolbox and benchmark. arXiv 2019, arXiv:1906.07155.
37. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
38. Zhuge, Y.; Ciesielski, K.C.; Udupa, J.K.; Miller, R.W. GPU-based relative fuzzy connectedness image segmentation. Med. Phys.

2013, 40, 011903. [CrossRef]
39. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.

Comput. Vis. 2010, 88, 303–338. [CrossRef]
40. Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv

2020, arXiv:2010.16061.

http://dx.doi.org/10.1007/s11633-018-1120-4
http://dx.doi.org/10.1002/cpe.4382
http://dx.doi.org/10.1007/s10032-013-0215-2
http://dx.doi.org/10.3390/jimaging7100214
http://dx.doi.org/10.3390/app11167610
http://dx.doi.org/10.1364/AO.423333
http://www.ncbi.nlm.nih.gov/pubmed/34143079
http://dx.doi.org/10.1109/CSPA.2018.8368681
http://dx.doi.org/10.1118/1.4769418
http://dx.doi.org/10.1007/s11263-009-0275-4

	Introduction
	Related Work
	Method
	Cascade Mask R-CNN
	Backbone Network
	Deformable Convolution

	Dataset
	Dataset Creation
	SFPI Statistics

	Experimental Results
	Implementation Details
	Evaluation Criteria
	Intersection over Union
	Average Precision
	mAP
	Average Recall
	Mean Average Recall (mAR)

	Results and Discussion
	SESYD
	SFPI Dataset

	Conclusions and Future Work
	References

