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ABSTRACT
In this work, we discuss and evaluate the reliability of first order uncertainty propagation results in context of
spherical Structure from Motion, concluding that they are not valid without restrictions, but depend on the choice of
the objective function. We furthermore show that the choice of the widely used geodesic error as objective function
for a reprojection error optimization leads to disproportional pose uncertainty results of spherical cameras.
This work identifies and outlines alternative objective functions to bypass those obstacles by deducing Jacobian
matrices according to the chosen objective functions with subsequent conduction of first order uncertainty prop-
agation. We evaluate the performance of the different objective functions in different optimization scenarios and
show that best results for uncertainty propagation are obtained using the Euclidean distance to measure deviations
of image points on the spherical image.
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1 INTRODUCTION

Spherical imaging recently experienced increasing at-
tention, since projects such as Microsoft’s StreetSide
or Google’s Street View [3] provide numerous spherical
images to online users. Furthermore, imaging devices
for professional [35, 41] or private consumers [8, 17]
widen the user groups being able to capture spherical
images.

The availability of multiple spherical images of a
scene allows for its reconstruction based on spherical
Structure from Motion (SfM). But while spherical SfM
is well understood [31, 39], uncertainty propagation
throughout the applied algorithms is often neglected.

Though the consideration of input parameter uncertain-
ties and their propagation allows for a confidence quan-
tification of obtained results and can be utilized for out-
lier rejection, accuracy estimation of the reconstruction
or mesh generation. The current work therefore pro-
poses the consistent estimation of camera pose uncer-
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tainties for spherical cameras by applying uncertainty
propagation steps through spherical SfM algorithms.

In this context, the applied mathematical optimization
steps represent an essential component, which is in gen-
eral for science and in particular for computer vision
a wide spread approach to retrieve optimal solutions
for mathematical problem statements. Especially over-
parametrized systems of equations in combination with
noisy input parameters do commonly not allow for an-
alytically exact solutions. Therefore, a huge variety
of prominent optimization algorithms such as Gauss-
Newton or Levenberg-Marquardt [24] is available to
handle such problem formulations by identifying glob-
ally optimal solutions.

These algorithms essentially rely on the formulation of
objective functions to rate the quality of estimated solu-
tions. The derivation or numerical approximation of Ja-
cobian matrices from these functions with respect to the
input parameters in the course of the optimization pro-
cess is necessary to determine the direction of further
convergence towards an optimal solution (Figure 1).

When performing first order uncertainty propagation,
such an optimal solution is chosen as linearization point
to derive the Jacobian matrix of the objective function
with respect to the provided input parameters. This al-
lows a reliability quantification of the resulting solution
based on uncertainties of the input parameters.



Figure 1: Outline of first order uncertainty propagation:
Assuming x0 to identify a position of interest for a given
measurement function, the first derivative of f (x) at x0
(red/thick line) is calculated to quantify the resulting
uncertainty for f (x0) from the uncertainty of parameter
x. For a m-dimensional function f (x), depending from
n parameter x = (x1,x2, . . . ,xn), the derivatives with re-
spect to the elements of x are commonly summarized in
a m×n Jacobian matrix.

Related work: Applying the Monte Carlo method [25]
is a very general and resource intensive way to perform
uncertainty propagation. The algorithm of interest is
executed multiple times with varying input parameters
and the influence of individual input parameters onto
the result can be deduced. Since the number of required
iterations scales highly nonlinear with the number of
input parameters this method was not considered in the
current work.

Applying the concept of unscented transform [18] al-
lows for a less resource intensive deduction of uncer-
tainties for a given algorithm by choosing represen-
tative sigma points. The distribution of sigma points
within the domain of input parameters is known. Evalu-
ating their distribution within the results domain allows
then for the deduction of resulting uncertainties from
input uncertainties.

Within the current work, we considered first order
uncertainty propagation, since the requirement of
linearization around the optimal point yields acceptable
results. When focusing on the topic of SfM, various
contributions recently considered different parts of the
reconstruction pipeline under the aspects of uncertainty
propagation:

To give a measure for the location uncertainty of ex-
tracted image features from a given set of input images,
Zeisl et al. provided an estimation of location uncer-
tainty for scale invariant feature points [44] with eval-
uations for SIFT [23] and SURF [4] features. When
it comes to the subsequent feature matching process

within images, the work of Ochoa and Belongie [29]
discusses the propagation of uncertainties for guided
matching techniques.

Sur et al. introduced approaches to perform uncertainty
propagation through the 8-point algorithm, which is
needed to calibrate initial camera poses against each
others [37, 38]. Di Leo et al. introduced a method
for covariance propagation to estimate uncertainties in
stereo vision [9], whereas Eudes et al. provide an ap-
proach for error propagation for local bundle adjust-
ment [11]. Apart from the SfM reconstruction focus,
Bleser et al. introduced in their work methods for error
propagation through SLAM-algorithms [5].

Outline: The proposed approach is outlined in Sec-
tion 2. Evaluation and results are elaborated in Sec-
tion 3. Section 4 concludes this work.

2 METHOD
In the course of this work, the considered uncertain-
ties are assumed to be Gaussian-distributed, so that
their propagation is achieved by propagating their cor-
responding 1-σ -environment represented by a covari-
ance matrix. For a given function f : x 7→ y with x∈Rn,
y ∈ Rm a linear uncertainty propagation is obtained
as [16]

cov(y) =
(

∂ f
∂x

)
cov(x)

(
∂ f
∂x

)T

(1)

The calculation of Jacobian matrices ∂ f
∂x corresponds to

the first term of a Taylor expansion and approximates
the original function linearly, while relying on the dif-
ferentiability of the objective function at the point of the
resulting solution.

Examining the pose uncertainty estimation of spherical
cameras, we elaborate in this work the consequences
of non-differentiability at the point of an optimal solu-
tion. For this purpose a scenario of uncertainty prop-
agation will be considered, which quantifies camera
pose uncertainties of spherical cameras from uncertain-
ties of extracted image features. To study and avoid
non-differentiabilities, different objective functions for
pose optimization will be introduced and evaluated. But
prior to outlining the detailed problem statement, we
introduce needed definitions as well as the underlying
concept of Structure from Motion (SfM), which was
considered for this work.

Specific background: We consider as input data for the
optimization problem a set of unordered images with
overlapping field of view (FOV) from a given scene,
such as [34, 36] or datasets on [1]. To make use of such
a set of images, many processing approaches in the field
of computer vision rely on the recovery of the camera
parameters [10, 13, 19, 28]. The minimal set of camera



Figure 2: (a) Projection of a 3D point Mw(x,y,z) in world coordinate system wcs to its image point Ms(θ ,φ)
(short: m) for a spherical camera on position C. (b) The resulting image of the camera, used in the course of this
work, is a high dynamic range (HDR) image with a resolution of 7′000×14′000 pixel. The images are parametrized
in the image coordinate system (ics) using spherical coordinates θ [0,π] and φ [0,2π). (c) Out of these images, a
3D pointcloud representing the captured environment is finally obtained.

parameters to be recovered consists of extrinsic param-
eters specifying the transformation (translation tcw and
rotation Rcw) from the world coordinate system (wcs)
into the camera coordinate system (ccs).

This set of parameters is commonly accompanied by a
set of intrinsic parameters, depending on the used cam-
era type. For perspective cameras, they list up to focal
length in relation to CCD-chip-size, principal point as
well as skew-value and are commonly considered in the
camera matrix K [14]. Existing radial or tangential lens
distortion as described in [15] can be summarized to a
distortion function D. K and D can be recovered from
the images of the scene [6, 26, 32], from accompanied
exif-data or from previously taken images depicting
special calibration patterns [7, 40]. Since for the present
work, a spherical camera was used [41], no intrinsic
but only extrinsic parameters have to be recovered [31].
The resulting spherical images are hereby considered as
a mapping from a given three-dimensional environment
through the camera center onto a unit sphere, making
the definition of intrinsic parameter obsolete (Figure 2).

To regain the needed extrinsic camera parameters in this
work, image feature extraction and matching was per-
formed. To account for the spherical character of the
images, a modified version of affine SIFT features (A-
SIFT) [23, 27] was applied to extract in average up to
100,000 features per image. The process of feature
matching was hereby constraint by the simultaneous
estimation of the Essential Matrix as proposed by La-
ganière [21], resulting in a significantly more accurate
set of feature matches between image pairs.

The subsequent camera calibration to regain the extrin-
sic parameters is split into the following two steps:

Firstly a rough guess of camera positions was estimated
for two images. This linear alignment step uses the es-
sential matrix E estimated from matched image features
[14] to align two initial cameras against each other.
Further camera positions were then estimated through
alignment towards the triangulated 3D points of the first
two cameras by applying the concept of 2D-3D corre-
spondences. These correspondences were used to solve
the PnP-problem by exploiting the EPnP-algorithm as
proposed by Moreno-Noguer et al. [12].

In a second step, the obtained rough alignment of cam-
era poses and 3D points is optimized by applying non-
linear optimization techniques. To perform this task a
wide range of implementations such as [2, 22, 42, 43]
is at hand. The authors of this work chose the imple-
mentation of Lourakis et al. [22], which uses internally
the Levenberg-Marquardt optimization.

To formulate/provide the required measurement func-
tion the collinearity constraint described by Schenk
[33] was applied. This constraint assumes 3D points
Mw, the cameras center of projection C and the image
point Ms (short: m) to be in line. A general formula-
tion, which holds for perspective and spherical cameras
enforces the cross product between the according vec-
tors to be zero:

m× (Rcw ·Mw + tcw) = m×Mc !
= 0 (2)

with Mw representing a 3D point in wcs, Mc describing
this point in ccs and m its corresponding image point
within the spherical image coordinate system (scs).

Deviations from this constraint during the registration
process are mainly caused by non-optimized model pa-
rameter (camera parameter + 3D points) and are de-



Figure 3: (a) The geodesic distance dg between an image point m and the corresponding backprojection on a
unit sphere m′ as defined in Equation 4. The collinearity constraint for cameras assumes 3D points, the center
of projection and the projection of the 3D points onto the image sensor to be in line. (b) Deviations from this
constraint are quantified as reprojection error.

scribed by the concept of reprojection error d (Figure
3). Averaging this error d between image point m and
the reprojection m′ of the corresponding 3D point Mw

for all k 3D points leads to the averaged reprojection
error d̄ and allows a rating of the overall optimization
quality:

d̄ =
1
k

k

∑
j=1

d(m j,m′ j) (3)

Since differently formulated objective functions can
be applied to perform the optimization step outlined
above, the introduced distance d has to be computed in
a corresponding manner. Examples are the squared dis-
tance in case of perspective images or, for the consid-
ered spherical scenario, error models such as geodesic
error, projected distance, tangential error for epipolar
distance or tangential error for reprojection distance as
proposed by Pagani et al. [31].

The mentioned objective functions approximate the ex-
act formulation of the geodesic distance dg for a given
2D-3D correspondence

dg (mT m′
)
= cos−1 (mT m′

)
(4)

for spherical images and represent valid approaches to
perform global optimization with varying quality of the
results as detailed in [31].

We demonstrate below, that such an approximation of
Equation 4 is even necessary to perform first order un-
certainty propagation, since the geodesic distance dg re-
sults in corrupt uncertainty estimations as shown below.

Problem statement: When minimizing the geodesic
distance dg between two points m and m′, the scalar

product (mT m′) converges to 1. For the first order
derivative of dg, we obtain then

d′g =
d dg(mT m′)

d(mT m′)
=− 1√

1− (mT m′)2
(5)

which encloses a singularity for (mT m′) = 1 (Fig-
ure 4b). For (mT m′)→ 1, we furthermore obtain

lim
(mT m′)→1

d dg(mT m′)
d(mT m′)

=−∞, (6)

implying that good optimization results
(
(mT m′) ≈ 1

)
exclude a meaningful first order uncertainty propaga-
tion: When relying on the geodesic distance dg as
the measurement function, improvements of the camera
pose estimation at constant input parameters will result
in an increased pose uncertainty.

2.1 Approach
As previously motivated, the geodesic distance function
dg (Equation 4) is not suitable for consistent first order
uncertainty propagation.

Therefore we evaluate multiple approximations of dg

such as the tangential distance dt with

dt = 2

√
1−m ·m′
1+m ·m′

(7)

as well as the Euclidean distance de between m and
m′ to perform camera pose optimization and first order
uncertainty propagation within the context of spherical
imaging. de is hereby given as



Figure 4: (a) Error measure dg given as scalar product
between m and m′ with optimized result at (mT m′) =
1. (b) The first derivative of dg shows the infinite
descend of the geodesic distance dg when m and m′
are aligned parallel against each other ((mT m′)→ 1).
When performing first order uncertainty propagation
leads this to infinite impact of an arbitrarily small er-
ror (See Figure 1).

de = ‖m−m′‖ (8)
as shown in Figure 3.
Camera pose optimization was therefore done by mini-
mizing the Euclidean distance de between the unit vec-
tors m and m′. To constrain all vectors m and m′
throughout the optimization to unit length, a normal-
ization of the vectors was considered.
Since, in contrast to dg, the first order derivative of de is
bounded and non-singular for (mT m′)≈ 1, a consistent
estimation of the resulting camera pose uncertainty can
be deduced as outlined in the following:
Considering m′ as reprojection of the 3D point Mc cor-
responding to m, we can reformulate de as

de = ‖m−m′‖= ‖m− Mc

‖Mc‖
‖

= ‖m− RcwMw + tcw

‖RcwMw + tcw‖
‖. (9)

Derivation of Jacobians: To perform first order uncer-
tainty propagation with the proposed Euclidean mea-
surement function (Equation 8), the according Jaco-
bian matrices were derived towards all input parame-
ters based on the rewritten Equation 9. The indices
j,k, l ∈ {1,2,3} identify thereby the components of the
respective vectors. For the different Jacobian matrices,
we obtain:

• Jacobian towards m:
∂de

j

∂mk
= δ jk (10)

with δ jk as Kronecker delta

δ jk =

{
1 j = k
0 j 6= k (11)

• Jacobian towards Mw:

∂h j

∂Mw
k
= Mc

j

(
3

∑
l=1

Rcw
lk Mc

l

)
−

Rcw
jk

‖Mc‖
(12)

• Jacobian towards Rcw:

∂h j

∂Rcw
kl

=− 1
χ

Mc
jM

c
kMw

l −δ jk
Mw

l
‖Mc‖

(13)

with

χ =
(
(Mc

x)
2 +(Mc

y)
2 +(Mc

z)
2)3/2

(14)

• Jacobian towards tcw:

∂h j

∂ tcw
k

=− 1
χ

Mc
jM

c
k−δ jk

1
‖Mc‖

(15)

Relying on those derivations, the final expression for
the impact of the uncertainty σn of spherical image
points represented through the normal vector represen-
tation proposed in [20] onto the camera pose uncer-
tainty σcp sums up to:

σcp =

((
∂h j

∂ tcw
k

)T

·ξ−1 ·
(

∂h j

∂ tcw
k

))−1

(16)

with

ξ =

(
∂h j

∂Mw
k

)
σ3Dw

(
∂h j

∂Mw
k

)T

+

(
∂de

j

∂mk

)
σn

(
∂de

j

∂mk

)T

(17)

Analogously, we deduced the corresponding Jacobian
matrices for dt and dg as error measure, being evaluated
in the following section.

3 EVALUATION AND RESULTS
We evaluated the impact of the different error mea-
sures onto the resulting pose uncertainty estimation of
the spherical cameras. The considered image points of
the spherical images were hereby extracted from im-
ages of the St.-Martinsplatz dataset (Figure 2(b)) with a
resolution of 14000×7000 pixel [30]. Since those im-
ages provide easily up to 100,000 features when apply-
ing feature extraction algorithms, only a small subset
of features of the original number of features was used.
This allowed for a reasonable resource consumption us-
ing Matlab software, whereas especially the inversion
of the matrices as introduced in Equation 16 implied
maximum processing load throughout the runtime of
the algorithm. In the course of this evaluation further
assumptions were introduced, diverging from the stan-
dard processing approaches to obtain 3D reconstruction
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Figure 5: Deduced Jacobians for different measurement functions (de, dg, dt ) influence the pose uncertainty esti-
mation within the directed reprojection error scenario. When approaching the optimal camera pose by minimizing
the appropriate reprojection error towards 0 (Right to left on the x-axis), only the Euclidean distance de allows
for a deduction of constant Jacobians, which is a necessary precondition to perform consistent camera pose uncer-
tainty estimation, by depending on the uncertainties of the input data and not on the degree of pose optimization.
Within the figure, the size of the three uncertainty ellipsoid components of the camera pose are plotted for each
measurement function (—, - -, - ·, partially overlapping), being normalized against their initial value. Within this
scenario, the rotation axis was set to rα = (1,1,1)T (see Section 3). Note furthermore the logarithmic scaling of
the ordinate.

results but allowing for an evaluation of additional as-
pects of the uncertainty estimation of the camera pose.
To enhance the comparability of the impact of feature
uncertainties, they were initialized with identical val-
ues, while for uncertainty propagation within standard
3D reconstruction pipelines methods such as [44] are
more appropriate, since the individual location uncer-
tainties of feature points based on gradient analysis is
assured.
Reprojection errors between the previously extracted
2D image feature points and the back projected 3D
points were furthermore parametrized for the evaluation
process, in order to control a simulated optimization
process (= minimization of reprojection errors) prop-
erly. Afterwards, a successive optimization of the cam-
era pose was simulated by iteratively minimizing the
reprojection error of the 3D points towards the 2D im-
age point.
The effect of the different measurement functions was
evaluated with respect to the pose uncertainty of the
spherical camera under two different aspects:
Directed reprojection error evaluation: After back
projecting the 3D points onto the sphere to obtain the
image points, the camera was rotated by a predefined

angle α around an axis rα . This rotation angle α along
the axis rα (here: rα = (1,1,1)T ) was reduced itera-
tively through the evaluation process to simulate an op-
timization of the camera pose.

The obtained results are shown in Figure 5. Note that
the rotation angle along rα was reduced iteratively from
0.14rad towards 0rad (reading the diagram from right
to left). Since the covariances of the input variables –
namely the uncertainty regions of the image features –
remained constant throughout the optimization process,
a constant camera pose uncertainty is expected as out-
put. Considering the differently deduced Jacobian ma-
trices, this constant camera pose uncertainty is only as-
sured for the objective function based on the Euclidean
distance de as introduced above.

Undirected reprojection error evaluation: In a sec-
ond evaluation scenario, a set of randomly generated
3D points was back projected onto the sphere to ob-
tain 2D image points. Afterwards, Gaussian-distributed
noise was added to the 3D points and they were once
again reprojected onto the sphere. This noise was iter-
atively reduced to simulate an optimization of the cam-
era pose. Deviating from the directed reprojection error
evaluation, where all deviations between image points
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Figure 6: Visualization of the impact of deduced Jacobians for different measurement functions (de, dg, dt ) for the
undirected reprojection error scenario. When approaching the optimal camera pose by minimizing the appropriate
reprojection error towards 0 (Right to left on the x-axis), also within this scenario allows exclusively the Euclidean
distance de for a deduction of constant Jacobians. This is a necessary precondition to perform consistent camera
pose uncertainty estimation, by depending on the uncertainties of the input data and not on the degree of pose
optimization. Within the figure, the size of the three uncertainty ellipsoid components of the camera pose is plotted
for each measurement function (—, - -, - ·, partially overlapping), being normalized against their initial value. Note
furthermore the logarithmic scaling of the ordinate.

m and back projected 3D points m′ had one common
predominant direction, the reprojection errors within
this scenario are distributed unconstrained in all direc-
tions, leading to random noise-like deviations.

But also in this evaluation scenario entails a reduction
of the noise-level, which corresponds to a continuous
approximation towards an optimized solution, a con-
stant change of the involved Jacobian matrices for al-
most all error measures. As in the first scenario leads
this to a continuously varying pose uncertainty estima-
tion, which is not scaling with the actual expectations
of constant uncertainty estimation.

Exclusively, the evaluated Euclidean distance de be-
tween 2D image points m and reprojected 3D points
m′ leads as expected to constant Jacobians allowing
for a consistent pose uncertainty estimation of spheri-
cal cameras throughout the optimization process.

4 CONCLUSION
In the course of this work, we evaluated different objec-
tive functions to perform reasonable uncertainty propa-
gation in SfM-frameworks using spherical images. On
the basis of those differently designed functions the un-
certainty estimation of spherical camera poses was eval-
uated throughout different optimization scenarios.

Relying on the gained insights, we conclude, that a re-
liable and consistent uncertainty estimation can not be
performed on arbitrarily designed objective functions,
since in general the deduced Jacobians tend to concede
disproportionately high impact to small errors, when it
comes to an iterative optimization of spherical camera
poses. Based on our evaluations, we suggest the evalu-
ated Euclidean distance de to perform uncertainty prop-
agation in a consistent manner, since this function ex-
clusively assures constant result for Jacobian matrices
as elaborated in this work.

Within the presented work, we deduced Jacobian matri-
ces for the examined objective functions and evaluated
the resulting camera pose optimization results. In gen-
eral, it is worth to mention that especially the inversion
of the deduced Jacobian matrices, as outlined through-
out this work, represents a significant obstacle in terms
of high processing costs, which has to be tackled when-
ever numerous points are considered.
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