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Abstract

Compositional zero-shot learning aims to recognize un-
seen compositions of seen visual primitives of object classes
and their states. While all primitives (states and objects)
are observable during training in some combination, their
complex interaction makes this task especially hard. For
example, wet changes the visual appearance of a dog very
differently from a bicycle. Furthermore, we argue that rela-
tionships between compositions go beyond shared states or
objects. A cluttered office can contain a busy table; even
though these compositions don’t share a state or object,
the presence of a busy table can guide the presence of a
cluttered office. We propose a novel method called Com-
positional Attention Propagated Embedding (CAPE) as a
solution. The key intuition to our method is that a rich
dependency structure exists between compositions arising
from complex interactions of primitives in addition to other
dependencies between compositions. CAPE learns to iden-
tify this structure and propagates knowledge between them
to learn class embedding for all seen and unseen compo-
sitions. In the challenging generalized compositional zero-
shot setting, we show that our method outperforms previ-
ous baselines to set a new state-of-the-art on three publicly
available benchmarks.

1. Introduction

Dog species differ considerably from each other.
However, when presented with an unseen dog specie, we
humans can recognize its states without hesitation. A
child that has seen a wet car can recognize a wet dog
regardless of the vast difference in appearance. Humans
excel at recognizing previously unseen compositions of
states and objects. This remarkable ability arises from
our ability to reason about various aspects of objects and
then generalize them over previously unseen objects. In
zero-shot learning, the goal is to predict unseen classes,
having seen a set of seen classes and a description of all the
classes. A vector of attributes for all classes is provided
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Figure 1. Shows overview of our approach. CAPE-Propagator ex-
ploits self-attention mechanism to learn interdependency structure
between compositions by identifying critical propagation routes.
We project output of self attention into a shared semantic space
along with image embedding. Compositions that are similar to
each other are placed near and far away from other compositions
in shared semantic space.

in the most common configuration of zero-shot learning.
The task is to learn the mapping between class description
vectors and images such that it can be generalized over
unseen classes [34, 33, 25]. Although deep neural networks
have been modelled after the human mind [34, 33, 25],
they struggle to perform well in zero-shot learning. In
this paper, we study a special setting of zero-shot learning
called Compositional Zero-Shot Learning.

“Compositional” in Compositional Zero-Shot Learning
derives from the composition of primitives of objects and
their states. At training time, all primitives (state, object)
are provided in some combination but not all compositions.
The goal is to predict novel compositions of primitives dur-
ing test time. This poses several challenges because of
the complex interaction between objects and their possible
states. For example, a wet car is very different from a wet
dog in visual appearance. Furthermore, a composition can
be abstract as well, i.e., Old city, Ancient Tower. In real-
world settings, multiple valid compositions can be found in
one image, i.e. A clean desk in an image of a wet dog. A

3828



successful methodology should be able to learn all aspects
of the complex interaction of objects and their states.
One simple solution to the above mentioned challenges is to
disentangle states from objects. If states can be completely
disentangled from objects, new combinations of states and
objects can be predicted easily. This approache have been
studied in some recent works [2, 30] on synthetic or sim-
ple datasets like UT-Zappos [40, 41]. In recent work, con-
trastive loss function-based methodology is introduced [14]
for real-world datasets. The approach in [14] uses a gener-
ative network to generate novel samples in order to bridge
the domain gap between seen and unseen samples. In the
real world, states can be imagined as transformation func-
tions of objects. A dry car changes the visual appearance
after the application of state wet. Approaches in [24, 15]
have studied the function of states as a transformation func-
tion. Other methodologies have tried to exploit all avail-
able information to learn useful correlations [28, 22]. Re-
cent works have explored learning dependency structures
between word embeddings and propagating them to unseen
classes [23, 18].
In the real world, compositions do not occur in isolation.
They are intricately entangled with each other and full of
noise. No approach has considered the holistic view of com-
plex interactions between compositions or their primitives.
While the approach in [23] exploits the shared information
between compositions that share primitives, it still ignores
the interaction of compositions that do not share primitives,
such as a coiled plate can be found in a cluttered kitchen
or a narrow road can be seen in an ancient city. We study
a more holistic view of interactions between compositions.
We argue that there is a hidden interdependency structure
between compositions. An overview of our approach is
shown in Figure. 1. We exploit self-attention mechanism
to explore hidden interdependency structure between prim-
itives of compositions and propagate knowledge between
them. Our contributions are as follows:

• We propose a multi-modal approach that learns to
embed related compositions closer and unrelated far
away.

• We propose a methodology that learns the hidden inter-
dependency structure between compositions by learn-
ing critical propagation routes and propagates knowl-
edge between compositions through these routes.

• Unlike [23], our approach does not require prior
knowledge of how the compositions are related.

2. Related Work
Recent works have exploited the fundamental nature of

states and objects to build novel algorithms. This includes
reasoning over the effect of states over objects [15, 24].

The approach introduced in [24] considers states as a linear
function that transforms objects into compositions. These
linear functions can add a state to a composition or remove a
state from the composition by inverting the linear function.
Approach in [15] also considers the symmetry of states.
Both approaches [24, 15] exploit group theory principles
like closure, associativity, commutativity and invertibility.
Both approaches [24, 15] use triplet loss [9] as the objective
function. In contrast with [24], [15] uses a coupling
and decoupling network to add or remove a state from a
composition. Other approaches have tried to exploit the
relationship between states and objects instead of assuming
states as transformative functions [2, 30, 12, 18, 22, 28].
The approach in [22] argues that context is essential to
model, i.e. red in red wine is different from red in red
tomato. The approach in [22] argues that compositional
classifiers lie in a smooth plane where they can be mod-
elled and propose to model compositional classifiers of
primitives using SVMs. These classifiers are pre-trained
using SVMs and then fed into a transformation network
that translates them into compositional space. The trans-
formation network is three layered non-linear Multi-Layer
Perceptron (MLP). Final predictions are retrieved by a
simple dot product between the output of the transfor-
mation network and image embedding. One recent work
uses word embeddings of primitives, and a simple MLP
projects embeddings into a shared semantic space [18]
(Compcos). Compcos [18] proposes to replace logits with
cosine similarity between image embedding and projected
word embeddings. Another recent work proposes to
replace multi-layer perceptron with a Graph Convolutional
Network [12] (GCN) to model the interaction between
compositions (CGE). CGE [23, 19] argues that composi-
tions are entangled by their shared primitives and proposes
to use GCN that propagates knowledge through entangled
compositions. CGE [23] utilizes a dot product based
compatibility function between compositional nodes and
image embeddings to calculate the scores of compositions.
While CGE [23] uses average of state and object embed-
dings as compositional embeddings, Compcos [18] uses
concatenation of state and object embeddings to represent
a composition.
Another view for solving CZSL problem is to disentangle
states from objects [2, 30, 14]. Approach in [2] proposes
to exploit causality [32, 43, 39, 4, 7, 27, 26] to disentangle
states and objects. The causal view in [2] assumes that
compositions are not the effect of images but rather
the cause of images, and do-intervention on primitives
generates a distribution from which a given image can
be sampled. Another recent work proposes to learn
independent prototypes of states and objects by enforcing
independence between the representation of states and
objects [30]. This approach [30] further exploits a GCN to
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propagate prototypes of states, objects and their calculated
composition. Like CGE [23], the approach in [30]
calculates scores of compositions by a dot product between
compositional nodes of GCN and image embeddings. This
leads to further knowledge sharing between completely
independent prototypes. Approaches in [2, 30] focuses on
synthetic dataset like Ao-Clevr [2] or UT-Zappos [40, 41].
A recent approach has explored the disentanglement of
states and objects on real-world datasets (SCEN) [14].
SCEN [14] uses contrastive loss and proposes to use com-
positions with shared primitives as positive samples and
others as negative samples. SCEN [14] further proposes
using a generative network to create novel compositions
to bridge the gap between seen and unseen compositions.
Our methodology is closer to CGE [23] that proposes
to model the interdependency between compositions.
However, CGE [23] only considers a dependency based on
shared primitives. CGE [23] does not model more complex
interdependencies that do not share primitives. Such as,
the presence of a cluttered desk can guide the presence of
cluttered office or the presence of a coiled plate can guide
the presence of cluttered kitchen. The major limitation of
CGE [23] is the usage of GCN to model interdependency
structure because GCN relies on a fixed adjacency matrix
to hardcode the interdependency structure. We propose to
exploit self-attention mechanism like the one proposed in
Transformer network [37] to learn this interdependency
structure instead.
Transformer networks were first introduced for natural
language processing to solve the problem of forgetting past
hidden states for long sentences and vanishing gradient
posed by RNNs [37]. Transformer networks [37] use a
stack of encoder and decoder blocks that contain Multi-
Head attention and multi-layer perceptrons. Multi-Head
Attention (MHA) calculates attention on slices of features
from query, key and value pairs. Number of slices are
determined by the number of heads in MHAs. The usage of
transformers [37] in the image classification task was ex-
plored in [6] that proposed to divide an image into 16× 16
tokens. An encoder network extracts features from 16× 16
tokens that are used for classification. This has lead to a
number of methodologies that utilize transformer networks
for image and video processing [29, 36, 42, 16, 13, 38, 17].
Large networks like proposed in [29] also have zero shot
capabilities because they are trained on large datasets.

Our proposed approach builds on the findings of several
prior works [22, 23, 18]. These works have explored the in-
terdependency between compositions [23, 22, 18] in a sim-
plistic manner. We propose a more holistic view of the in-
terdependency structure between compositions. We argue
that compositions are not simply related based on explic-
itly shared primitives. There is also implicitly hidden in-

terdependency between compositions. We further propose
a self-attention-based methodology to explore and exploit
this interdependency structure between primitives of com-
positions and propagate the knowledge between them. Our
approach learns this interdependency structure during train-
ing in an end-to-end manner and can find more various de-
pendencies between compositions than simply shared prim-
itives.

3. Approach
3.1. Problem Formulation

Firstly, we formally define Compositional Zero Shot
Learning. Let x ∈ X denote an RGB image and y ∈ Y
denote compositional label y = (s, o) where s ∈ S is state
and o ∈ O is object. We can then define training set τ as
τ = {(x, y)|x ∈ X , y ∈ Ys} where Ys ∈ Y represents seen
compositions. The task of CZSL is to predict novel compo-
sitions Yn during test time having seen set of seen labels Ys.
Novel compositions Yn does not include any compositions
from Ys i.e, Yn ∩ Ys = ∅. We consider a specialized case
of this problem called generalized compositional zero shot
learning that includes seen compositions as well during test
time Y = Yn ∪ Ys.
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Figure 2. The architecture of CAPE-Propagator module that finds
propagation routes and projects embeddings into share semantic
space. Embeddings are first passed through a LayerNorm [3] fol-
lowed by a Multi-Head Attention block. The output of Multi-Head
Attention is residually added to the input and fed into a Multi-
Layer Perceptron ϕ that projects it into a shared semantic space.

3.2. Compositional Attention Propagated Embed-
dings (CAPE)

CZSL is the image classification task, where each image
is associated with a composition of state (s) and object (o).
In the most straightforward setting, the compositional prim-
itives, i.e. states and objects, which are all observed dur-
ing training, should provide an avenue for generalization.
However, the interaction of states and objects is complex.
For example, a visual transformation of dry to wet carpet is
very different from a dry to the wet car. This means that our
model needs to learn how each state and object interact with
each other. Moreover, as noted in [23], compositions of
states and objects are inherently a multi-label problem, e.g.
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while wet dog and dry car represent states with respect to
liquid interaction, these objects simultaneously have other
valid states representing colour, size etc. While not repre-
sented in the label set, these valid states, if discovered by
the model, can present another avenue for knowledge trans-
fer.
Furthermore, multiple compositions are a mixture of other
compositions, e.g. An image of cluttered desk might also
contain a blue mug. Learning a dependency structure be-
tween cluttered desk and blue mug will help propagate
knowledge about blue mug to cluttered desk. Our novel
model Compositional Attention Propagated Embedding
(CAPE) aims to learn this knowledge propagation from
training data as shown in Figure 3 leading to state-of-the-art
performance. Unlike prior methods [23], we do not limit the
exploration of dependency structures by constraining our
methodology by assumed priors (i.e. compositions are only
related by shared primitives). We rely on our approach to
discover all possible dependency structures during training.
Learning the Propagation routes. We introduce a module
(CAPE-Propagator) for discovering interdependency struc-
ture between compositions. An overview of the CAPE-
Propagator is given in Figure. 2. Given a list of compo-
sitional pairs, CAPE-Propagator is tasked with finding a
propagation route to transfer knowledge between them be-
fore outputting the final embedding. We frame this as a
self-attention problem. Given the set Ys, we find the com-
patibility between each composition as a query search prob-
lem. Each composition Ysi is defined in the feature space
by a concatenation of the word embedding of its represented
state s and object o as Ŷsi ∈ R|Y |×D where D is the fea-
ture dimension. Let TQ, TK and TV be linear transforma-
tions that maps from D to D as a transformation of input
pre-trained word embedding. These transformations map
the input to a new linear space suitable for propagation. We
pass Ŷ∫ through a LayerNorm layer followed by each of
these transformation layers to get the Query Q, Key K and
Value V .

For a given Compositional pair yi, we define a propaga-
tion route as a compatibility between its query Qi and all
Keys K as:

Pi = Softmax(Qi · Kj for j ∈ |K|) (1)

Pi is the propagation coefficient and defines the contribu-
tion of each composition to the output embedding of a given
composition. In essence, we expect the model to learn that a
wet dog is related to other wet animals and other properties
of the contained state and object. At test time, the propa-
gation coefficients for all Compositions Y are computed to
form P ∈ R|Y|×|Y|.
Propagating the Compositional Knowledge. CAPE uti-
lizes the Propagation coefficients P to propagate knowledge
between compositions at test time. The propagated knowl-

edge results in computing a new representation of each pair
YP ∈ R|Y|×D as:

YP = P × V (2)

This operation aggregates knowledge across all composi-
tions defined in our dataset and makes the model aware of
all the properties of each state and object. Since we learn
the propagation coefficients from data, these propagation
routes are improved during training on Ys instead of hav-
ing to hardcode them from our label set similar to previ-
ous methods[23]. The propagated embeddings are added
as a residual to the initial embedding to get the output
Compositional Embedding YA = Ŷ + YP . This propa-
gation is done for multiple heads where each head can learn
to identify separate important properties between composi-
tions. We set the number of heads to six for CAPE. In the
end, a three-layer non-linear Multi-Layer Perceptron (MLP)
projects concatenation of all the heads into a shared seman-
tic space to get YF = ϕ(YA) where ϕ represents three layer
non-linear MLP. For projection, ϕ expands the input em-
beddings YA into 4096 dimensions, then projects it into the
original dimension D. Last layer of ϕ projects embeddings
into shared semantic space and is defined as Wl ∈ R|D|

where D = |f(x)| represents dimensionality of image fea-
tures, Wl represents weights of layer. Each of the first
two layers are followed by LayerNorm [3], ReLu [1] and
Dropout [35] where dropout rate is set at p = 0.5. The last
layer is followed by the activation function ReLu [1].
Measuring Compatibility of an Image to Composition.
Given an image x, we pass it through a learnable feature
extractor f to get feature respresentation f(x). The com-
patibility of an Image to each composition is measured to
get the score s:

s(x, Yi) =
f(x) · YFi

|f(x)||YFi
|

(3)

Objective function. We define a cross-entropy on top of
our scoring function to learn the feature extractor f and
CAPE-Propagator in an end-to-end manner.

L = − log(
exp s(x, Yi)∑

j∈Ys
exp s(x, Yj)

) (4)

By optimizing the full model end to end, CAPE learns to
identify critical propagation paths between compositions
leading to more generalizable embeddings.

4. Comparison with State of the Art

Datasets. We evaluate our methodology on three standard
benchmark datasets MIT-States [10], CGQA [23] and UT-
Zappos [40, 41]. MIT-States [10] dataset was collected
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Figure 3. Compositional Attention Propagated Embedding (CAPE) learns interdependency between compositions. We concatenate word
embeddings of states and objects to form embeddings of compositions Y . During training, critical propagation routes are learnt by ex-
ploiting self-attention mechanism. These propagation routes are used to calculate an updated representation of embeddings in a residual
manner. In the end, we learn to project these embeddings into shared semantic space along with image embeddings.

using an older search engine with limited human annota-
tions and significant label noise. This dataset is more ab-
stract than other datasets and includes intangible objects and
states such as ancient city, old town. MIT-States [10] con-
sists of 53k images with 245 objects, 115 states and 1252
compositions. Out of all compositions, 300 compositions
are in the validation set, and 400 compositions are in the
test set.
The second dataset that we use is CGQA [23]. CGQA [23]
is a relatively newer dataset with the largest composition
space among all three datasets. It consists of 38k images,
453 states, and 870 objects. There are 6963 seen compo-
sitions, 1368 unseen compositions in the validation set and
1047 unseen compositions in the test set.
UT-Zappos [40, 41] is relatively simpler dataset and con-
tains 16 states and 12 objects. It has 29k images, 83 seen
compositions, 15 unseen compositions in the validation set
and 18 unseen compositions in the test set.
Implementation Details. We use Resnet-18 [8] to extract
512 dimensional feature vector for each image. Resnet-
18 [8] is pre-trained on ImageNet [31] dataset. We uti-
lize word embeddings for states and objects. For UT-
Zappos [40, 41] and MIT-States [10], we use concatenation
of FastText [5] and Word2Vec [20, 21]. For CGQA [23], we
use only word2vec [20, 21] embeddings to represent states
and objects. We use PyTorch to implement our methodol-
ogy. We use Adam Optimizer [11] with initial learning rate
of 5.0 × 10−05 and batch size 30. We train all our models
for 120 epochs.
Metrics. We follow the evaluation setting proposed in [28].
We evaluate our methodology on Area Under Curve (AUC),
Harmonic Mean (HM), Seen Accuracy (S) and Unseen Ac-
curacy (U). Seen accuracy is calculated on seen composi-
tions, and unseen accuracy is calculated on unseen composi-
tions. Harmonic Mean (HM) is calculated on Seen and Un-
seen accuracy. AUC is calculated based on the variation of

calibration bias between seen and unseen compositions and
represents performance at different operating points [14].

4.1. Results

Our approach outperforms all methodologies in AUC
with especially significant improvement in CGQA [23], the
most challenging dataset. We achieve SOTA AUC of 4.6%
in CGQA dataset as compared to the last best result of
CGE [23] of 4.2%. We outperform unseen accuracy (U)
and Harmonic Mean (HM). We set a new state-of-the-art of
16.3% in Harmonic Mean and 16% in unseen accuracy. In
seen accuracy, we are comparable with the previous state-
of-the-art CGE [23] by achieving 33.0%. This impres-
sive performance demonstrates our method’s scalability to
a large compositional space.
In the MIT-States dataset, we set a new state of the art in
AUC by achieving 6.7%. In Seen and Unseen accuracy,
state of art results is set by [23] by achieving 32.8% and
28.3% respectively. We are comparable to the previous
state-of-the-art in seen and unseen accuracy by achieving
32.1% and 28.0%, respectively. MIT-States [10] dataset has
considerable label noise that can affect the interdependency
structure discovery. However, our comparable results with
the previous state-of-the-art show robustness to this label
noise.
UT-Zappos is the smallest dataset and contains composi-
tions that can not be differentiated visually [23]. We set a
new state of the art by achieving 35.2% AUC. We achieve
68.5% unseen accuracy and 62.3% seen accuracy, that is
comparable to the previous state of the art.
We observe that we outperform all baseline methods con-
sistently on large search spaces like CGQA [23]. This is
because while previous algorithms only use a basic notion
of compositional interdependency structure, we focus on a
more complex view by integrating the discovery of the inter-
dependency structure in our approach. This leads to the dis-
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MIT-States UT-Zappos C-GQA
Method S U HM AUC S U HM AUC S U HM AUC
AoP [24] 14.3 17.4 9.9 1.6 59.8 54.2 40.8 25.9 17.0 5.6 5.9 0.7
LE+ [22] 15.0 20.1 10.7 2.0 53.0 61.9 41.0 25.7 18.1 5.6 6.1 0.8
TMN [28] 20.2 20.1 13.0 2.9 58.7 60.0 45.0 29.3 23.1 6.5 7.5 1.1
SymNet [15] 24.2 25.2 16.1 3.0 49.8 57.4 40.4 23.4 26.8 10.3 11.0 2.1
Compcos [18] 25.3 24.6 16.4 4.5 59.8 62.5 43.1 28.1 28.1 10.1 12.4 2.3
CGEff [23] 28.7 25.3 17.2 5.1 56.8 63.6 41.2 26.4 28.1 10.1 11.4 2.3
Co-CGEff [19] 27.8 25.2 17.5 5.1 58.2 63.3 44.1 29.1 29.3 11.9 12.7 2.8
CGE [23] 32.8 28.0 21.4 6.5 64.5 71.5 60.5 33.5 33.5 15.5 16.0 4.2
Co-CGE [23] 32.1 28.3 20.0 6.6 62.3 66.3 48.1 33.9 33.3 14.9 15.5 4.1
SCEN [14] 29.9 25.2 18.4 5.3 63.5 66.3 47.8 32.0 28.9 12.1 12.4 2.9
CAPEff (Ours) 30.5 26.2 19.1 5.8 60.4 67.4 45.5 31.3 32.9 15.6 16.3 4.2
CAPE (Ours) 32.1 28.0 20.4 6.7 62.3 68.5 49.5 35.2 33.0 16.4 16.3 4.6

Table 1. Results on MIT-States, UT-Zappos and C-GQA. We report best seen (S) accuracy, best unseen (U) accuracy, best harmonic
mean (HM), and area under the curve (AUC) on the compositions. ff denotes frozen feature extractor. Our model outperforms prior
methodologies on AUC in all the datasets.

covery of beneficial connections between different related
compositions.
Visualizing Propagation routes. Table 2 shows the top 5
and bottom 5 activations in the attention map from Multi-
Head attention. The listed compositions have the top five
and bottom five actions for a given query. We conduct
this analysis on CGQA [23] and MIT-States [10] dataset.
We report interesting compositions from all heads of Multi-
Head attention. Results in Table 2 confirm our hypothe-
sis that a complex interdependency structure exists between
compositions that do not share primitives. “Cracked Mud”
is related with “Cracked Window” and “Shattered Win-
dow”. Shattered Window composition may visually con-
tain a broken mirror with cracks visually similar to the
state “Cracked”. Learning how “Shattered” looks also up-
dates how “Cracked” looks. We observe the same with the
composition “Sliced Salmon” related to “Pureed Seafood”.
While “Sliced Salmon” and “Pureed Seafood” do not share
any primitive, they contain visual information as they come
from a similar family of dishes containing seafood. Fur-
thermore, “Blue Mug” is related to “Cluttered Kitchen” and
“Cluttered Desk”. An image of “Cluttered Kitchen” might
also contain a blue mug. Learning how “Blue Mug” looks
will also help determine a “Cluttered Kitchen” or “Clut-
tered Desk” due to the propagation of knowledge. We also
observe that the bottom 5 activation always contain com-
pletely irrelevant compositions. Such as, “Red Floor” has
the least activation for “Green Salad”, a food category. The
same is observed with “Winter Picture”, which has least
activation for “Yellow Desk”. On the other hand, “Win-
ter Picture” has high activations for “Leafless”, “Barren”,
“Forested”, and “Tree”, and these objects can be found in
an image of a “Winter Picture”. Furthermore, object “Red-
wood” in “Weathered Redwood” have high activations for

object “Log” that are both representation of wood. Sim-
ilarly, states “Weathered”, “Broken”, “Splintered” are re-
lated with each other such that all of them represent a dam-
aged or worn out state of an object. We also observe that our
approach is able to find propagation routes for compositions
with shared primitives such as, “Yellow Wall” have highest
activation for “Yellow Chair”, “Dry Pond” have high acti-
vations for “Dry Bush” and “Dry Forest” and “Weathered
Redwood” have high activation for “Weathered Log”. This
shows that our approach can find simple propagation routes
that share primitives and also complex propagation routes
share some property of state or object and not expressed in
primitives.
Impact of Feature Representations. Consistent with
previous works, we experimented with the frozen back-
bone in our network. CAPEff represents our approach
with frozen backbone in Table 1. We outperform all pre-
vious methods with a frozen backbone, including a recent
approach SCEN [14] that is specially developed for only
frozen features. In CGQA [23], we match state of the art
from CGE [23] in AUC and outperform in harmonic mean
and unseen accuracy. In UT-Zappos [40, 41], CAPEff out-
performs in unseen accuracy over previous approaches with
frozen backbone. While in the MIT-States dataset, CAPEff

outperforms previous approaches with the frozen backbone
in all metrics.

4.2. Qualitative Results

In this section, we will discuss our qualitative results in
detail. Figure 4 shows qualitative results of our approach
on MIT-States [10] and CGQA [23] dataset. We observe
that our approach can predict compositions of images con-
taining noise and other valid compositions. Composition
“Crumpled Jacket” contains objects clouds and grass. Like-
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MIT-States
Query Top 5 Bottom 5

Cracked Mud
Cracked Window, Shattered Window, Cracked Door,
Broken Window, Cracked Mirror

Fresh Bread, Fresh Butter, Fresh Cheese,
Fresh Meat, Fresh Orange

Weathered Redwood
Broken Log, Splintered Log, Peeled Log,
Burnt Log, Weathered Log

Old Bus, Old City, Old Car,
Old Truck, Old Street

Rusty Bridge
Old Log, Old Library, Old Boat,
Old Computer, Old Bear

Broken Column, Broken City, Broken Lightbulb,
Broken Jewelry, Broken Necklace

Dry Pond
Dry Bush, Wet Bush, Damp Bush,
Barren Bush, Dry Forest

Eroded Shore, Broken Shore, Weathered Shore,
Verdant Shore, Mossy Shore

Sliced Salmon
Pureed Seafood, Pureed Fish, Pureed Salmon,
Diced Seafood, Cooked Seafood

Ruffled Bed, Wide Blade, Draped Bed,
Ruffled Shower, Ruffled Leaf

CGQA
Query Top 5 Bottom 5

Red Floor
Carpeted Floor, Textured Floor, Cracked Floor,
Painted Floor, Sripped Floor

Green Salad, Green Brocoli, Green Cabbage,
Green Asparagus, Green Apple

Winter Picture
Overgrown Tree, Forested Tree, Leafless Tree,
Overgrown Weeds, Barren Tree

Yellow Desk, Comfortable Chair, Yellow Chair,
Red Desk, Plaid Chair

Large Cooler
Large Snow, Large Crust, Large Mountain,
Large Omelette, Large Barier

Full Hangar, Full Floor, Full Ground,
Open Door, Transparent Door

Blue Mug
Cluttered Kitchen, Cluttered Desk, Cluttered Shelf,
Cluttered Office, Cluttered Counter

Leafless Bush, Leaflless Tree, Leafless Branch,
Bushy Bush, Bamboo Bush

Yellow Wall
Yellow Chair, Colorful Chair, Red Chair,
Purple Chair, Striped Chair

Bare Tree, Huge Tree, Overgrown Tree,
High Tree, Tall Tree

Table 2. The table shows the Top 5 and bottom 5 pairs for the query pairs given in the first column taken from MIT-States and CGQA
datasets. Top 5 and bottom 5 pairs are selected from the attention matrix before softmax. We observe that query compositions have highest
activations for similar compositions shown in column “Top 5” and least activations for different compositions shown in column “Bottom
5”. We also observe that our approach can find diverse propagation routes.

Figure 4. Shows qualitative results of our approach on MIT-States and CGQA dataset. First four images in each row from the left show
positive results where our approach predicted correct composition. Last four image show sub optimal results where our approach did not
predict correct composition. First row contains results from CGQA dataset and second row contains results from MIT-States dataset.

wise, the composition “Bare Tree” also contain objects road
and a car. The composition “Cluttered Desk” contains ob-
jects table and frame. The composition ”Green Tray” con-
tains object “Pizza” as well.
We also show sub-optimal results where our approach did
not predict compositions correctly. We observe that in mul-
tiple sub-optimal results, the correct composition is present
in the top 3 predictions. Sub-optimal results that contain
correct predictions in the top 3 results are “Dented Armor”,
“Deflated Rubber”, “Brown Chair”, and “Gold Mirror”. We
also observe label noise in MIT-States results, such as “De-
flated Rubber” is a duck floating because it is “Inflated”,
as predicted by our approach. Furthermore, “Dented Ar-
mor” does not show any dents in it, and our approach pre-
dicts it as “Heavy Armor” which is more close to the vi-

sual representation of the image. We also observe that our
sub-optimal predictions are not necessarily incorrect. For
example, composition “Gold Mirror” is a circular mirror,
and our approach predicts it as ”Round Mirror”. Composi-
tion ”Brown Chair” predicted as “Wooden Chair” is a chair
made of wood. Composition “Large Zebra” predicted as
“Standing Zebra” shows an image of “Zebra” while stand-
ing. There are multiple valid compositions for a given im-
age. We come to the same conclusion as [23] that problem
of CZSL should be considered a multi-label problem.

5. Ablation

In this section, we ablate over different configurations of
the attention mechanism of CAPE. Results of ablation for
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harmonic mean and AUC are shown in Table 3. CAPE in
Table 3 represents our original approach proposed in sec-
tion 3. We conduct our ablation on MIT-States [10] and
CGQA [23] datasets. Results are reported on validation sets
from both datasets. Our original approach as proposed in
section 3 achieves 8.2% AUC and 23.2% Harmonic mean
on MIT-States [10] dataset. It achieves 6.1% AUC and
19.5% harmonic mean on CGQA [23] dataset. The ar-
chitecture of the CAPE-Propagator does not change during
these experiments. In all experiments, number of heads in
Multi-Head Attention are kept constant at 6. We keep all
hyperparameters constant across all experiments.
Self Attention on States, Objects and Compositions
(CAPEself ). This configuration is represented by
CAPEself in Table 3. We create one tensor Ŷself where
|Ŷself | = |S|+ |O|+ |Ys| and containins word embeddings
of states, objects and compositions. During testing, we ap-
pend unseen compositions to ˆYself to get |Ŷself | = |S| +
|O|+ |Ys|+ |Yn|. Compositions are calculated as mean of
their state and object word embeddings. CAPE-Propagator
projects ˆYself to shared semantic space to get YF . Final
composition scores are calculated between image embed-
ding and compositional nodes in YF by using compatibility
function shown in Eq. 3. During training CAPE-Propagator
learns propagation routes by exploiting self-attention mech-
anism as explained in section 3. CAPEself configuration is
very similar to the configuration used in [23] that also ap-
plies supervision on only compositional nodes. CAPEself

achieves 8.1% AUC and 23.0% harmonic mean on the MIT-
States dataset. It achieves 6.0% AUC and 19.2% harmonic
mean on CGQA [23] dataset. We observe a performance
loss as CAPEself lags in both datasets in HM and AUC.
Cross Attention on Primitives and Self Attention on
Compositions (CAPEdual). This configuration is repre-
sented by CAPEdual in Table 3. CAPEdual applies cross at-
tention on states and objects and self-attention to their com-
positions. Firstly, we apply cross attention on word embed-
dings of state and objects. We use one Multi-Head attention
to apply cross attention between states and objects to get

ˆYstates. We use second Multi-Head attention to apply cross
attention between objects and states to get ˆYobjects. Af-
terwards, we concatenate ˆYstates and ˆYobjects to get com-
positions ˆYdual where | ˆYdual| = |Ys| during training and
| ˆYdual| = |Ys| + |Yn| during testing. We input ˆYdual into
CAPE-Propagator to get YF . CAPE-Propagator discov-
ers propagation routes on ˆYdual by exploiting self-attention
mechanism as explained in section 3. Final composition
scores are calculated between image embeddings and YF

by using compatibility function shown in Eq. 3. CAPEdual

achieves 8.2% AUC and 23.2% harmonic mean on MIT-
States dataset [10]. It achieves 6.0% AUC and 19.5%
harmonic mean on CGQA [23] dataset. This configura-
tion matches the performance of CAPE in MIT-States [10]

dataset but lags behind in AUC in CGQA [23] dataset.
Multi-Layer Perceptron (MLP) as a replacement for
CAPE-Propagator. In this experiment, we used Multi-
Layer perceptron instead of CAPE-Propagator or Multi-
Head attention. The results are represented by heading
“MLP” in Table 3. MLP was configured to have same
amount of parameters as CAPE-Propagator. MLP achieves
7.5% AUC and 22.1% harmonic mean on MIT-States [10]
dataset. It achieves 5.4% AUC and 18.3% harmonic mean
on CGQA [23] dataset. Since MLP does not model interde-
pendency structure, it lags in all datasets.
We observe that our original configuration, as proposed in
section 3 outperforms all configurations. Introducing addi-
tional embeddings or MHAs leads to poorer performance.
CAPE is an effective approach that exploits self-attention
to learn hidden interdependency structures between compo-
sitions caused by the primitives. Introducing new networks,
like in the case of CAPEdual leads to an increase in the num-
ber of learnable parameters and a redundant cross-attention
mechanism. On the other hand, primitives do not get super-
vision in CAPEself leading to poorer performance.

MIT-States CGQA
Method AUC HM AUC HM
CAPEdual 8.2 23.2 6.0 19.5
CAPEself 8.1 23.0 6.0 19.2
MLP 7.5 22.1 5.4 18.3
CAPE 8.2 23.2 6.1 19.5

Table 3. Ablation over different configurations of CAPE. We re-
port highest achieved AUCs on MIT-States [10] and CGQA [23]
validation dataset.

6. Conclusion
We propose a novel approach to the task of Composi-

tional Zero-Shot Learning. We evaluated our approach on
three benchmark datasets (CGQA [23], MIT-States [10],
UT-Zappos [40, 41]) extensively. We argued that there is a
complex interdependency structure between compositions
that do not share any primitives. We exploited the atten-
tion mechanism to discover this interdependency structure
and propagate it to unseen classes. Our qualitative analy-
sis reaffirm our original hypothesis that there exists a com-
plex interdependency structure between compositions. Our
approach outperforms prior methodologies and shows im-
provement in all benchmark datasets. Our qualitative results
demonstrate that there can be multiple valid predictions of
one image, and the problem of CZSL should be considered
a multi-label problem. We encourage future works to con-
sider this aspect while building their methodologies.
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