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Figure 1. Given a sequence of input images and the desired future years, our model can generate a structurally cons istent
image sequence of a plausible future.

ABSTRACT

Generative AI has demonstrated strong capabilities in learning data distributions and producing realistic out puts.
Although traditional approaches like Generative Adversarial Networks (GANs) have largely focused on static
images and often fail to model coherent temporal sequences. Diffusion models have recently emerged as a more
stable and effective alternative for generating time-sequenced data, yet their application to satellite im agery
remains limited. Satellite data poses unique challenges such as multispectral channels and irregular tem poral
intervals that are poorly addressed by models trained on natural image datasets. To bridge this gap, we pr opose
a spatio-temporal video diffusion model tailored for satellite-based forecasting tasks. Trained on curated dat asets
from the Landsat and Sentinel missions, our model generates temporally coherent sequences by conditioni ng on
metadata like year, while effectively handling the spectral diversity and uneven sampling intervals characte ristic
of satellite imagery. When evaluated against retrained state-of-the-art baselines, our method demonst rates
superior performance in modelling environmental changes, particularly deforestation, and achieves strong s cores
on perceptual quality metrics such as Fréchet Inception Distance (FID) and Learned Perceptual Image Patch
Similarity (LPIPS), highlighting its effectiveness for geospatial generative tasks. Our code and data is available
at github.com/dfki-av/STDS. 
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1. INTRODUCTION

Generative models have recently emerged as powerful tools capable of learning complex data distribution s and
producing realistic outputs across various domains. While Generative Adversarial Networks (GANs)1 initially
dominated progress in image synthesis, they suffer from limitations such as mode collapse and unstable trai ning.
Diffusion models have since gained prominence by offering stable training, greater diversity, and high-q uality
results through a denoising process, making them well-suited for tasks like remote sensing. 
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This progress has extended to video generation, where models now capture both spatial and temporal dy-
namics, enabling the synthesis of coherent sequences that model scene evolution over time. Such capabilities are 

particularly valuable in geoinformation science, where satellite imagery is used to monitor environmental changes 

such as deforestation, urbanization, and natural disasters. However, generative modelling in this field remains 

underutilized due to challenges such as irregular time intervals, complex spatial structures, and limited labelled 

data. We address these challenges by introducing a novel framework for synthesizing the temporal evolution of 

satellite imagery. The goal is to generate realistic visualizations of how geographic regions change over time, 

enabling both historical analysis and future forecasting.

The proposed model is trained on sequences of time-stamped satellite images and learns to generate plausible 

future (or interpolated) frames based on past observations and specified target years, as shown in Fig. 1. This 

approach allows it to model the dynamics of landscape change, offering valuable applications in urban planning, 

deforestation tracking, and climate impact assessment. The model is trained on curated datasets representing 

real-world scenarios such as deforestation in the Amazon region and European urban growth, collected via Google 

Earth Engine (GEE) 

2 and annotated with temporal metadata for conditioning. Furthermore, evaluation against 

state-of-the-art baselines shows that the model effectively learns to capture complex, often irregular, temporal 

progressions, generating coherent and realistic outputs.

The contributions of our work can be summarised as follows.

1. We introduce a novel model designed to synthesize realistic temporal progressions in satellite imagery, given 

a target year and a desired image sequence.

2. We present curated and processed datasets that capture dynamic geographic transformations, such as 

deforestation and urbanization over time.

2. RELATED WORKS

Our approach builds on recent advances in image-to-image translation, particularly Zero-Shot Image Translation 

3 

and Plug-and-Play Diffusion, 

4 which use Denoising Diffusion Implicit Model (DDIM) 

5 inversion to guide image 

editing while preserving structure. We extend this concept to the spatio-temporal domain by integrating DDIM 

inversion into a video diffusion framework, enabling the generation of structurally consistent and temporally 

coherent satellite image sequences for forecasting gradual landscape changes.

Unlike traditional video prediction models such as Masked Conditional Video Diffusion (MCVD) 

6 and 

spatio-temporal Diffusion for Continuous Stochastic Video Prediction (STDiff), 

7 which rely on motion cues like 

optical flow, our method addresses the unique challenges of satellite imagery, irregular sampling intervals, and 

long-term semantic shifts by conditioning generation on temporal metadata. This allows the model to produce 

context-aware and semantically meaningful predictions across time.

DiffusionSat 

8 improves over motion-based models by conditioning on rich satellite metadata within a 3D 

ControlNet diffusion framework, enabling interpolation and forecasting. However, its reliance on numerous 

metadata inputs and one-shot generation limits scalability. Our model, by contrast, uses only temporal metadata 

and supports recursive generation of longer sequences, offering a more efficient and extensible alternative.

Spatio-Temporal Super Resolution for Satellite Imagery (STSR), 

9 designed for super-resolution, synthesizes 

high-resolution outputs from low-resolution inputs using spatio-temporal cues. While it can extrapolate tempo-
rally, its focus remains on spatial fidelity at known timestamps. Our method is explicitly tailored for temporal 

progression, supporting diverse use cases like long-term forecasting and interpolated scene generation, making it 

better suited for dynamic Earth observation tasks.

3. METHOD

To model temporal progression in satellite imagery, we consider a sequence of past observations {I 

(t 1 
) , . . . , I(t F 

) },
where each frame I 

(t) ∈ R 

C×H×W represents a satellite image captured at time t. The goal is to synthesize 

future representations { Î 

(t 

′ ) } for target time steps t 

′ > t F 

, making this a time-conditional image generation task.
Leveraging a video diffusion framework, the input is structured as a tensor R 

F×C×H×W , allowing the model to 

learn and reproduce temporally coherent changes grounded in historical geospatial patterns.
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Figure 2. (A) The pipeline comprises three core stages: Encoding, Conditioning, and Decoding. (B) The illustrated
architecture outlines the sampling process, which incorporates DDIM inversion. During training, this is replaced by
the standard forward diffusion. (C) Z

′

s, Z
′

t, and Z
′

st denote the spatial, temporal, and combined spatio-temporal token
representations, respectively, following the denoising process.

3.1 Encoding

The architecture of our model, as seen in Section 3.1, is based on the Latte video generation framework, which
builds on the Latent Diffusion Model (LDM) pipeline10 by conducting the diffusion process in latent space
for greater efficiency. As shown in Fig. 2, each input video frame is first encoded into a compressed latent
representation using an encoder E , allowing the model to learn spatial and temporal patterns in a reduced
dimensionality space.

Let VL ∈ R
F×C×H×W denote the latent video representation, where F , C, H, and W represent the number of

frames, channels, height and width respectively. This latent tensor is reshaped into a sequence of spatio-temporal
tokens ẑ ∈ R

nf×nh×nw×d, where nf , nh, and nw are the number of tokens along temporal and spatial dimensions,
and d is the token dimensionality.

To retain positional information, a spatio-temporal positional embedding p is added:

z = ẑ + p (1)

The sequence z is reshaped into zs ∈ R
nf×t×d, where t = nh × nw, and fed into a spatial Transformer

to capture local and global dependencies within each frame. The output is then reshaped to zt ∈ R
t×nf×d

and processed through a temporal Transformer block, enabling the model to learn the dependencies among the
frames.

3.2 Conditioning Data.

Each video frame in our dataset is associated with temporal metadata T , such as year or month, which is
continuous and numerical in nature. The aim is to model the conditional distribution p(v | T ), where v denotes
the video. A naive strategy would be to embed T into short descriptive captions; however, this unnecessarily
discretizes continuous variables and is constrained by the limitations of text encoders in representing numerical
data accurately, as presented by Radford, A. et al.11
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To overcome this, we adopt the numerical metadata conditioning technique introduced in Diffusion-Sat, 

8 

using sinusoidal timestep embeddings commonly employed in diffusion models. Specifically, the metadata is first 

normalized to the range [0, 1000], aligning it with the diffusion timestep domain. It is then projected using the 

following sinusoidal functions:

Project(k, 2i) = sin 

( 

kΩ− 

2i 

d

) 

, Project(k, 2i + 1) = cos 

( 

kΩ− 

2i 

d

) 

(2)

where k is the normalized metadata value, i indexes the embedding dimension, d is the total dimensionality, and
Ω = 10000 is a scaling constant. The projected embedding is further processed by a Multi-Layer Perceptron 

(MLP), identical to the one used for encoding the diffusion timestep in Denoising Diffusion Probabilistic Model 

(DDPM), 

12 enabling effective temporal conditioning within the model.

f θ f 

(T f ) = MLP ([Project(T f )]) (3)

where f θ f 

represents the learned MLP embedding for the metadata value T f for frame f . The temporal
metadata embedding m is then m = f θ 

(T f 

) ∈ R 

D , where D is the embedding dimension.

As with the reshaping of z into z s 

and z t 

for the spatial and temporal transformers, respectively, the temporal 

embeddings are reshaped in a similar manner. The temporal embedding vector is then added to the embedded 

timestep t as t = f θ 

(t) ∈ R 

D , so that the final conditioning vector c is:

c = m + t (4)

3.3 Conditioning Method

We adopt Adaptive Layer Normalization with zero initialization (AdaLN-Zero) for conditioning the Transformer 

blocks, following the Diffusion Transformer (DiT) 

13 framework. In standard Layer Normalization (LN), the 

activations are normalized and scaled using learned affine parameters γ and β:

LN(x) = 

γ(x− µ) 

σ
+ β (5)

where µ and σ represent the mean and standard deviation of the input activations. In AdaLN, these param-
eters become conditional and are predicted from an external conditioning vector c. Specifically, a Multi-Layer 

Perceptron (MLP) maps the conditioning input to a pair of vectors:

γ c 

, β c 

= MLP cond 

(c) (6)

In a Transformer block, these AdaLN-normalized activations are used as inputs to operations such as Attention 

and MLP layers. The outputs are then combined with the original input through residual connections. In the 

unconditioned case, this would look like:

x = x + AttentionOutput, x = x + MLPOutput (7)

In AdaLN-Zero, these residual updates are further modulated by an additional learnable scaling factor α c 

, 

also predicted from the conditioning vector c. The conditioned form becomes:

x = x+ α c 

· Operation(AdaLN(x | c)) (8)

where Operation refers to either the Attention or MLP sub-layer.

The ”zero” initialization ensures that α c 

starts near zero, means that the conditioning has little effect at the 

start of training. This stabilizes optimization by allowing the model to first learn the underlying structure of the 

data before conditioning influences the outputs. As training progresses, the influence of c increases, allowing the 

model to adapt based on temporal or contextual metadata.
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3.4 Decoding

After passing through the Transformer backbone, a crucial step involves decoding the video token sequence 

to generate both the predicted noise and the predicted covariance. The shapes of these two outputs match the 

dimensions of the input V L 

∈ R 

F×H×W×C . In line with prior research, 

13 this is achieved by using a conventional 

linear decoder along with a reshaping operation.

3.5 Sampling

During sampling, the model follows a process similar to training, but employs DDIM inversion to ensure structural 

consistency, as it does not rely on image conditioning. Starting with the input frames v, an encoder E transforms 

them into a latent representation v 0 

. Instead of sampling from random noise, the model deterministically 

reconstructs the corresponding noise vector v T 

through iterative DDIM inversion:

predicted ϵ 

= ϵ θ 

(v t−1 

, t − 1) (9)

v t 

≈ 

√ 

¯ αt 

· v 0 

+ 

√ 

1− ¯ αt 

· predicted ϵ (10)

Here, ¯ αt 

denotes the cumulative product of the noise schedule coefficients up to timestep t, indicating the 

retained signal proportion after t steps in the forward diffusion process. This reconstruction continues until 

timestep T , resulting in the latent noise v T 

. Instead of initializing generation with random noise, the model 

uses this inverted noise along with a sequence of target years T as conditioning input. For example, if the input 

frames span 2015–2020, the model is conditioned on years 2021–2026 to guide generation. From this point, 

the model leverages the pre-trained spatial and temporal transformer blocks (as described in Section 3.1) to 

synthesize future outputs aligned with the given temporal context, as illustrated in Fig. 1.

4. EXPERIMENTS

4.1 Dataset

This study utilizes satellite imagery from the Landsat and Sentinel series, combining Landsat’s extensive historical 

archive (since 1984) with Sentinel-2’s higher-resolution data. Both provide multispectral information beyond 

RGB, including bands like Near Infrared (NIR) and Short Wave Infrared (SWIR), critical for environmental and 

urban analyses.

Two primary datasets were curated: one capturing rapid deforestation in the Amazon (1997–2024) using 

Landsat data and spectral indices like NDVI, and another focused on more gradual urban expansion across 

European cities (2015–2025) with Sentinel-2 imagery. The deforestation dataset highlights visually distinct 

vegetation loss, while urban change is subtler, characterized by structural developments such as road expansions 

and new buildings, influenced by complex socioeconomic factors.

Training on the urban dataset, the model learns broad spatial distributions and development patterns distinct 

from the organic, irregular changes of deforestation. While effective at capturing overall urban layouts, it shows 

limitations in reconstructing finer geometric details like roads and coastlines, indicating areas for future refinement 

to handle complex urban structures more accurately.

4.2 Model Evaluation and Comparative Analysis

A key requirement of our model is to produce outputs that maintain structural consistency with input frames 

while exhibiting plausible temporal progression. Structural similarity is measured using the Structural Similarity 

Index (SSIM), and temporal consistency is evaluated via Fréchet Video Distance (FVD), which assesses coherence 

across video sequences.

We benchmark our model on the Amazon deforestation dataset due to its clear annual changes in forest 

cover, which offer both visual and quantitative evaluation. A temporal holdout strategy is employed by excluding 

specific years (e.g., 2005, 2015, 2022–2024) from training, allowing us to test the model’s capacity to generate 

these held-out years from earlier observations.
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Our model is compared against three baselines in spatio-temporal image generation: DiffusionSat,8 STSR,9

and STDiff.7 While DiffusionSat and STSR are tailored for satellite imagery, STDiff is a general-purpose video
prediction model without satellite-specific metadata conditioning. Comparisons are limited to scenarios where
the target year follows the input sequence, as some baselines are not designed for arbitrary temporal prediction.

All baselines were retrained on the deforestation dataset per our evaluation strategy. Missing metadata
required by models like DiffusionSat, such as geo-coordinates, cloud cover, and Ground Sampling Distance
(GSD), were approximated using empirical values to ensure compatibility.

As shown in Fig. 3, among the baselines, DiffusionSat aligns most closely with our objective, generating future
frames from three inputs and metadata. STSR was adapted from super-resolution to temporal interpolation but
suffers in fidelity and long-term forecasting. STDiff, dependent on motion cues, often replicates input frames
due to the static nature of satellite imagery.

Each baseline presents limitations: DiffusionSat’s heavy metadata reliance is a practical barrier, STSR offers
efficient inference but lacks detail and accuracy, and STDiff struggles to generalize without explicit motion. In
contrast, our model requires only a short image sequence and target year, free of metadata, while outperforming
others in capturing meaningful spatio-temporal changes, thus providing a more scalable and effective solution for
temporal satellite image generation. As reported in Table 1, our method achieves a substantially lower FID of
55.5827 and outperforms the baselines on LPIPS, L1, and PSNR, underscoring its capacity to produce temporally
consistent satellite images.

Figure 3. Comparison of results generated by our model and baseline models. While several baselines ten d to replicate
input frames with minimal variation, indicating limited temporal understanding, our model captures clear temporal
progression with meaningful changes aligned to expected deforestation trends. 

Table 1. Performance comparison of our model against existing methods. Arrows indicate whether higher (↑) or lower (↓)
values are preferred for each metric.

S.No Method FID ↓ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑

1 Dif-Sat8 154.2632 2.96× 10−4 0.4042 0.5483 19.6337 

2 STSR9 82.80 2.8× 10−4 0.5968 0.3971 21.184 

3 STDiff7 117.5076 1.31× 10−3 0.4200 0.5693 8.6653 

4 Our Model 55.5827 2.0 × 10−4 0.5571 0.3722 23.1605
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4.3 Ablation Studies

To evaluate the impact of varying input configurations and conditioning strategies, we conducted a series of
ablation studies.

Single-Frame Input

We first tested whether the model could learn temporal progression from a single frame by reformulating the
task as image diffusion with F = 1 in the input tensor VL ∈ R

F×C×H×W . Each image was conditioned on its
corresponding year Y during training. At inference, the same frame was conditioned on a future year Y ′ > Y .
However, the outputs often resembled the input image with minimal variation, an outcome attributed to DDIM
inversion, indicating that single-frame conditioning is insufficient for modelling meaningful temporal change. A
few examples did exhibit minor signs of adaptation (Fig. 4, left).

Two-Frame Input

Expanding the input to two sequential frames was intended to provide minimal temporal context. Similar to
the single-frame setup, the model primarily reconstructed the input images without exhibiting strong evidence
of learning or extrapolating future transitions (Fig. 4, right).

Figure 4. (Left)Comparison of the results vs ground-truth from a 1-frame model. The top and the bottom sequen ces
represent two separate examples. (Right) Comparison of results vs ground truth from a 2-frame model. Both models
exhibit limited temporal learning. The images in the top and the bottom row exhibit the temporal evolution of the sa me
region. 

Four-Frame Input 

Introducing four frames with temporal conditioning provided a richer temporal context. The model showed
improved ability to learn temporal progression, generating samples that align well with future ground-tru th
frames while preserving structural consistency with the input sequence (Fig. 5, left). 

Cross-Attention Conditioning 

We trained a variant using standard cross-attention instead of AdaLN. Each frame was conditioned on its
timestamp through cross-attention layers. Although the results maintained high visual fidelity, they exhibit ed
minimal temporal evolution, closely resembling the inputs regardless of target year (Fig. 5, right). This sugge sts
that AdaLN conditioning is more effective in learning temporal dynamics. 

Table 2. Image evaluation of different frame-based meth-
ods. (i) CA = Cross Attention, (ii) Y = Year condition-
ing, (iii) Y+SD* = Year + Structural Difference. 

S.No. Method FID ↓ L1 ↓ SSIM ↑ LPIPS ↓ PSNR ↑

1 1-Frame 66.66 2.2 × 10−4 0.5203 0.4179 22.25

2 2-Frames 66.64 2.2 × 10−4 0.5206 0.4177 22.25 

3 4-Frames 58.31 1.9 × 10−4 0.5511 0.3884 23.18 

4 

4-Frames 

(CA*)
56.26 1.86 × 10

−4
0.5636 0.3767 23.46

5 

6-Frames 

(Y*)
48.38 2.1 × 10−4 0.5510 0.3738 22.72

6 

6-Frames 

(Y+SD*)
55.58 2.0 × 10−4 0.5571 0.3722 23.16

Table 3. Video evaluation metrics of different frame-based
models. (i) CA = Cross Attention, (ii) Y = Year condi-
tioning, (iii) Y+SD* = Year + Structural Difference. 

S.No. Method 

FID-VID 

(FVD-3DRN50) ↓

FVD 

(FVD-3DInception) ↓

1 2-Frames 21.24 216.32 

2 4-Frames 11.09 168.15

3 

4-Frames 

(CA*)
14.43 217.26

4 

6-Frames 

(Y*)
10.42 159.37

5 

6-Frames 

(Y+SD*)
10.69 176.64
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Figure 5. (Left)Comparison of ground-truth vs actual results from a 4-frame model. (Right) Comparison of ground-truth
vs actual results from a 4-frame cross-attention conditioned model.

Figure 6. (Left)Comparison of ground-truth vs actual results from a 6-frame model conditioned on temporal metadata
alone (years). (Right) Comparison of ground-truth vs actual results from a 6-frame conditioned on years and structural
differences based model.

Six-Frame Input

Extending the input to six frames yielded noticeable improvements in both structural accuracy and temporal
coherence. The model captured realistic progression patterns while preserving spatial fidelity across frames (left,
Fig. 6).

Structural Difference Conditioning:

To further enhance structural alignment, we introduced a variant incorporating structural difference information
defined as (1 − SSIM), normalized between 0 and 1000 (see Section 3.2). The overall conditioning vector is
defined as:

c = m+ t+ s (11)
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where m, t, and s represent the timestep, temporal, and structural embeddings, respectively. During inference, 

since future structural differences are unknown, we approximated this component by averaging differences across 

input frames. This variant showed slight improvements over the 6-frame baseline in terms of structural consis-
tency with future ground-truth samples (Fig. 6, right). Quantitative evaluations for all setups are presented in 

Table 2 and Table 3.

5. CONCLUSION

We propose a Spatio-Temporal Diffusion model for satellite imagery, built on the Latte framework, which gen-
erates temporally coherent image sequences by learning from multiple input frames conditioned on temporal 

metadata. A DDIM inversion-based sampling strategy helps preserve spatial structure while enabling realistic 

future predictions. The model performs best when conditioned on temporally closer frames, making it particu-
larly effective for filling gaps caused by missing or corrupted data (e.g., cloud cover). Although not pixel-perfect, 

the outputs are plausible and valuable for applications like deforestation tracking, urban growth monitoring, 

and climate impact assessment. Future work could refine urban-scale details with higher-resolution priors and 

shorter-context training, and incorporate drivers such as temperature, precipitation, and socio-economic data to 

improve interpretability and extend the framework to domains like medical imaging and precision agriculture.
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