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ABSTRACT

In this paper, we present a study on single and multi-view image-
based AR glasses pose estimation with two novel methods. The first
approach is named GlassPose and is a VGG-based network. The
second approach GlassPoseRN is based on ResNet18. We train and
evaluate the two custom developed glasses pose estimation networks
with one, two and three input images on the HMDPose dataset. We
achieve errors as low as 0.10◦ and 0.90mm on average on all axes for
orientation and translation. For both networks, we observe minimal
improvements in position estimation with more input views.

Index Terms: Computing methodologies—Artificial intelligence—
Computer vision—Tracking; Computing methodologies—Machine
learning—Machine learning approaches—Neural networks

1 INTRODUCTION

After constant progress in industry and research over decades, Aug-
mented Reality (AR) is currently on its way into our daily lives. AR
applications and AR-dedicated hardware have become part of most
smartphones. Further, many companies have started to commercial-
ize AR glasses. Already available glasses like Microsoft Hololens
have shown the capabilities of AR thanks to extensive usage of sen-
sors. A variety of built-in sensors enable highly precise tracking,
which is crucial for seamless and accurate display of AR content.
The deployment of AR glasses for car drivers and passengers in-
side the car enables a multitude of use cases enhancing the driving
experience and safety, such as AR navigation in front of the eyes
or information display about the car status to cite a few. In the
car context, tracking based on built-in cameras inside the glasses is
difficult, as the car interior and the dynamic outside world is visible.
In this specific case, cameras deployed inside the car for tracking
are unavoidable. Tracking AR glasses inside a car comes with the
challenge to ensure the functionality in adverse and changing light-
ing conditions. This can be provided through infrared (IR) cameras,
capturing images that are less affected by changes in lighting. De-
spite the mentioned advantage of IR images, little research has been
conducted for IR-based object pose estimation.
RGB image-based single view object pose estimation based on Deep
Learning has been the focus of many research works in Computer
Vision. However, the influence of the number of input images be-
tween single-view and multi-view Deep Learning-based object pose
estimation approaches has not been analyzed yet.
To address this, we conduct a thorough evaluation of single and
multi-view object pose estimation approaches in IR using the HMD-
Pose dataset [1] for our benchmark (Figure 1). This dataset provides
IR images of three different views. We utilize the center image for
the single view approach, the two outer images for the stereo image
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Figure 1: Overview of the three different view cases compared on
GlassPose and ResNet18 for AR glasses pose estimation.
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Figure 2: Our full pipeline to regress the 6DoF glasses pose. The
blue square represents the automated glasses cropping. The upper
part of the network performs orientation estimation, the lower part
estimates the translation. The translation part contains two more
Convolutional-layer, handling the higher image resolutions.
approach, and all three images for the triple image approach. For
the evaluation, we introduce ”GlassPose” and ”GlassPoseRN”, two
novel glasses pose estimation deep neural networks. We train and
evaluate both networks on three different view combinations.

2 AR GLASSES POSE ESTIMATION

We conduct our single vs. multi-view comparison of AR glasses
pose estimation on the recently published HMDPose dataset [1].
HMDPose is a large-scale data glasses dataset, consisting of around
3 million 1280× 752 pixel images. It contains IR images from 3
different perspectives of 4 different AR glasses, worn by 14 subjects.
Our network GlassPose (Figure 2) is inspired by the state-of-the-art
of IR head pose estimation [2]. For the orientation part of the net-
work, we first perform glasses cropping by building upon an existing
DNN-based face detector [5] and automatically adjust the output
to glasses area and height with a resolution of 128×54 pixel. The
translation part of the network takes the full images with resolution
320×188 as input, which requires a deeper network. The orienta-
tion part of the architecture first contains two convolutional-layers
with a filter size of 5×5, both followed by a max pooling layer. For
the translation, we add one more layer with the same specification.
For orientation, there are two more convolutional-layer with a filter
size of 3×3 filter, where the first one is followed by a max pooling
layer. For translation, we again add one convolutional-layer without



max pooling. Three fully connected layers finalize both branches
of the network. During training, the first two fully connected layers
use dropout as regularization (σ = 0.5). The output of both net-
works is then concatenated. The 2D bounding box coordinates of
the orientation part are further used in the translation part to en-
hance translation prediction accuracy by appending the normalized
bounding box coordinates to the first fully connected layer of the
translation estimation part.
In addition, we benchmark GlassPoseRN, which is based on a
ResNet18 [3] backbone. We add three fully connected layers with
the dimensions 256, 64 and 7 to regress the orientation and transla-
tion. We use the full images with resolution 320×188 as input.
We train both networks with an Adam optimizer and the initial learn-
ing rate α = 0.0001. Our training, validation and test split is 94/3/3.
The split is based on the widely used 98/1/1 split for Big Data. We
slightly adjust the split given the high framerate of 60FPS in the
HMDPose dataset. We shuffle the data before splitting. We use the
ReLU activation function for the hidden layers and deploy linear
activation for the output layers. We utilize the Euclidean distance for
translation and orientation based on the loss introduced by Kedall et
al. [4]. Accordingly, our loss function is defined as follows:

loss := β
∣∣∣∣t− t̃

∣∣∣∣
2 +

∣∣∣∣∣∣∣∣q− q̃
||q̃||
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2

(1)

q and q̃ describe the ground truth and the estimated quaternion,
respectively. t and t̃ are defined equally for translation. We normalize
the predicted quaternion and compute the Euclidean distance to the
ground truth quaternion. We regress unit quaternions on the positive
w scale to obtain unambiguous estimations for the orientation. In
addition, we compute the Euclidean distance for the translation. The
translation is weighted accordingly through the scaling factor β to
achieve a similar scaling to the orientation before being added to the
orientation loss. We set this to 0.5 to achieve similar scaling levels.
We train both networks until convergence. The GlassPose networks
train for 180 epochs with a batch size of 128, the GlassPoseRN
networks for 120 epochs with a batch size of 64.

3 EVALUATION

3.1 Evaluation metrics

We define three metrics for benchmarking. The first two metrics are
the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE), the latter to penalize large errors in the estimation larger.
We use the Balanced Mean Angular Error (BMAE) as our third
metric. It takes the unbalanced amount of different head orientations
into account by defining different ranges:

BMAE :=
d
k ∑

i=1
φi,i+d , i ∈ dN∩ [0,k], (2)

φi,i+d defines the average angular error. For our evaluation, we set
the section size d to 5 degrees and the range size k to 180 degrees.
For the position error, we utilize the L2 loss. We calculate each
metric on each individual axis and on all axes combined.

3.2 Results

Table 1 shows the orientation error of our GlassPose and Glass-
PoseRN methods on the defined metrics on all axis individually
and on average for all three view combinations. GlassPose shows
results between 0.60◦ and 0.69◦ for the MAE with negligible change
between the number of views. The RMSE is higher for stereo, re-
sulting in 1.13◦ on average compared to 1.02◦ for the other view
variants. Similarly, the BMAE for the stereo model is 4.29◦, while
being 4.03◦ and 3.89◦ for the one and three view model, respec-
tively. GlassPoseRN performs significantly better with even less
differences between the number of views. The MAE and the RMSE
are 0.10◦ and 0.19◦ for all different view combinations on average,
respectively. The BMAE is minimally higher on the three view vari-
ant with 0.24◦ against 0.18◦ for the other view combinations on all

GlassPose GlassPoseRN
# Views Metric Roll Pitch Yaw Avg Roll Pitch Yaw Avg

1
MAE 0.65 0.60 0.60 0.62 0.07 0.10 0.14 0.10

RMSE 1.02 0.97 1.08 1.02 0.10 0.24 0.24 0.19
BMAE 4.64 1.76 5.71 4.03 0.20 0.11 0.24 0.18

2
MAE 0.69 0.60 0.61 0.63 0.07 0.10 0.13 0.10

RMSE 1.23 0.99 1.17 1.13 0.10 0.24 0.22 0.19
BMAE 5.40 1.92 5.55 4.29 0.18 0.12 0.24 0.18

3
MAE 0.67 0.60 0.61 0.63 0.06 0.11 0.14 0.10

RMSE 1.06 0.98 1.03 1.02 0.09 0.25 0.22 0.19
BMAE 4.44 1.69 5.54 3.89 0.29 0.12 0.32 0.24

Table 1: Orientation results of the GlassPose and GlassPoseRN
approaches by view combinations on the given error metrics for the
roll, pitch, yaw and the average in degrees. The lowest values per
view for each approach are highlighted.

GlassPose GlassPoseRN
# Views x y z L2 x y z L2

1 2.67 3.22 2.56 5.65 0.66 0.54 0.42 1.09
2 2.63 2.37 2.28 4.89 0.59 0.46 0.35 0.94
3 2.85 2.73 2.54 5.43 0.49 0.50 0.35 0.90

Table 2: Results for the positional, Euclidean error of the GlassPose
and GlassPoseRN approaches in millimeters. The lowest values per
view for each approach are highlighted.
axes combined. Table 2 shows the positional L2 error of the Glass-
Pose and GlassPoseRN methods on all individual axis and in total
for all three view combinations. The position estimation minimally
improves by considering more than one view. For GlassPose, the
overall L2 error is 5.65mm for one view compared to 4.89mm and
5.43mm for two and three views, respectively. GlassPoseRN results
in generally lower error, where the L2 error drops from 1.09mm for
one view to 0.94mm and 0.90mm for two and three views.
Our experiments show little difference for orientation estimation
with increasing number of views. For position, we observe some
decrease in error with more views. In general, we recommend using
one image for a cost-efficient setup as it results in comparably simi-
lar error. If the main goal is a minimal pose estimation error where
the setup cost is not the focus, more images can bring some improve-
ments. More results on GlassPose networks trained on individual
glasses are available in the supplementary material.

4 CONCLUSION

In this paper, we compared single and multi-view variants of two
different AR glasses pose estimation methods on the HMDPose
dataset. We benchmarked our custom developed CNNs GlassPose
and GlassPoseRN in three different forms, estimating the pose with
one, two and three input images. We achieve errors as low as 0.10◦
and 0.90mm on average on all axes for the orientation and translation.
For both networks, we observe minimal improvements in position
estimation with more input views. Future work will consist of RNN
and depth-based AR glasses tracking approaches.
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