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ABSTRACT

Scale Invariant Feature Transform (SIFT) has been proven
to be the most robust local invariant feature descriptor, how-
ever, SIFT is designed mainly for grayscale images. Many
local features can be misclassified if their color information
is ignored. Motivated by perceptual principles, this paper
addresses a new color space, called perception-based color
space, in which the associated metric approximates perceived
distances and color displacements and capture relationships
that are illumination invariance. Instead of using grayscale
values to represent the input image, the proposed approach
builds the SIFT descriptors in the new color space, resulting
in a descriptor that is more robust than the standard SIFT with
respect to color and illumination variations. The evaluation
results support the potential of the proposed approach.

Index Terms— SIFT, color space, local features

1. INTRODUCTION

In all of the feature extraction methods, the invariance with re-
spect to imaging conditions represents the biggest challenge.
More specifically, the local extracted features should be in-
variant with respect to geometrical variations, such as trans-
lation, rotation, scaling, and affine transformations. Further-
more, these features should be invariant with respect to pho-
tometric variations such as illumination direction, intensity,
colors, and highlights. SIFT [1] [2] has been proven to be the
most robust among the other local invariant feature descrip-
tors with respect to different geometrical changes [3]. How-
ever, due to the color constancy problem, a lot of geometri-
cal invariant approaches avoid dealing with colored images.
Therefore, illumination invariance is a crucial problem which
has to be solved for local features. While some researchers
already focused on the color constancy problem [4] [5], some
attempts to make use of the color information inside the SIFT
descriptors have been proposed [6] [7] [8]. In [6], the nor-
malized RGB model has been used in combination with SIFT
to achieve partial illumination invariance besides its geomet-
rical invariance. The color invariance of this approach is still
limited because of the primitive color model used. In [7], a
multi-stage recognition approach has been developed in order
to achieve both color and geometrical invariance. In the first

stage, a color classifier is used label the different image re-
gions. Then, the SIFT descriptors are augmented by adding
the color labels. In spite of the good performance of this ap-
proach, its need for colored learning instances limits its per-
formance in several applications. In [8], physical-based color
invariants have been developed for invariant color represen-
tations under different imaging conditions. This color invari-
ance model, called CSIFT, results from the Kubelka-Munk
theory [9], and parameters have to be provided by the user.

The model we propose in this paper is called Perception-
based Color SIFT (PC-SIFT). It provides geometrical and
photometric invariance. PC-SIFT is based on standard SIFT
method: the locality of the extracted features and the way in
which the descriptors are built provides the invariance with
respect to the geometrical variations, and the scale-space
theory offers the main tool for selecting the most robust fea-
ture locations against scale variations. At the same time,
PC-SIFT is based on the perception-based color space [10],
which provides invariance to illumination. Firstly, we seek a
color space where difference vectors between color pixels are
unchanged by reillumination. We therefore restrict our atten-
tion to 3-dimensional color space parameterizations in which
color displacements, or gradients, can be computed simply
as component-wise subtractions. Secondly, the l2 norm of
a difference vector should match the perceptual distance be-
tween the two colors. Therefore, the standard computational
method of measuring error and distance in color space should
match the perceptual metric used by human viewers. This
principle relates to the idea of “flatness” of perceptual space,
where perceptual distance can be computed by the Euclidean
distance when the Euclidean computation is preceded by an
appropriate nonlinear reparameterization of color space (as in
color spaces such as CIE L∗a∗b∗ and CIE L∗u∗v∗). There is
ample evidence that perceptual space is unlikely to be exactly
flat [11], but there is also a fair amount of evidence that it may
be usefully treated as flat for many applications [11] [12].

The remainder of the paper is organized as follows: We
will present the conversion from RGB color space to the
perception-based color space in more details in the section 2.
In section 3 the SIFT method in the perception-based color
space will be explained. The evaluation results showing the
high performance of PC-SIFT in comparison with the stan-
dard SIFT and CSIFT [8] are presented in the section 4. We



finally conclude in section 5.

2. PERCEPTION-BASED COLOR SPACE

In this section, we explain how to formalize the perception
color space conditions [10]. Firstly, we translate RGB color
space to XY Z color space. The standardized transformation
settled by the CIE special commission [13], γ is a gamma
corrected function with γ = 2.0, as follows:

 X
Y
Z

 =
1

0.177

 0.49 0.31 0.20
0.177 0.812 0.011
0.00 0.01 0.99

  γ(R)
γ(G)
γ(B)

 (1)

Secondly, we translateXY Z color space to the perception
color spaceUVW . Let’s assume that−→x is the tristimulus val-
ues of a sensor represented in XY Z coordinates, F is the 3D
color space parameterization we wish to solve for. Following
[10], we assume that materials and illuminants in our scenes
are such that the effect of relighting is well-approximated by
multiplying each tristimulus value (in an appropriate basis) by
a scale factor that does not depend on the materials observed.
We represent the fixed change to an appropriate basis by the
matrix B. Therefore, the effect of relighting can be written as

−→x 7→ F (−→x ) = B−1DB−→x (2)

where D is a diagonal matrix depending only on the illumi-
nants and not the material of objects. It’s shown ([10]) that
the nonlinear function F of Equation (2) must take the form:

F (−→x ) = A
(
l̂n (B−→x )

)
(3)

whereA andB are invertible 3×3 matrices and l̂n denotes the
component-wise natural logarithm. The matrix B transforms
color coordinates to the basis in which relighting best corre-
sponds to multiplication by a diagonal matrix, while the ma-
trix A provides degrees of freedom that can be used to match
perceptual distances. In [10], the matrix A and B have been
experimentally estimated using databases of similar colors.
We take the same obtained values as follows:

A =

 27.07439 −22.80783 −1.806681
−5.646736 −7.722125 12.86503
−4.163133 −4.579428 −4.576049

 (4)

B =

 0.9465229 0.2946927 −0.1313419
−0.117917 0.9929960 0.007371554
0.0923046 −0.04645794 0.9946464

 (5)

3. PC-SIFT DESCRIPTORS

The three main stages in an invariant feature extraction
method are interest points detection, descriptor building and
descriptor matching.

Interest points should be selected so that they achieve the
maximum possible repeatability under different photometric
and geometric conditions. As discussed in section 2, our
model PC-SIFT is based on the perception-based color space,
which is invariant to illumination changes. Furthermore, the
extremum in Laplacian pyramid, which is approximated by
the Difference-of-Gaussian for the input image in different
scales, has been proven to be the most robust interest points
detector with respect to geometrical changes [3] [6]. We fol-
low the same strategy as the standard SIFT method in PC-
SIFT, but use our perception based color space, and detect the
feature points for the three new color channels respectively.

After localizing the interest points, feature descriptors are
built to characterize these points. These descriptors should
contain distinct and specific information for their correspond-
ing interest points. Different schemes have been followed for
building descriptors [1] [2] [3]. Instead of using grayscale
gradients for building feature descriptors, we set up a new
feature descriptor in 3D perception-based color space. As
Fig.1 shows, for a given pixel in the vicinity of the interest
point, we denote Gx the 3-dimensional color gradient in x
direction, and Gy the 3-dimensional color gradient in y direc-
tion. We consider the angle θ from vector Gx to vector Gy

as the gradient orientation. The range of θ is from 0 to 2Π.
All orientations are assigned relative to a dominant/canonical
orientation of the interest point. We consider the length of the
vector from Gx to Gy as the magnitude of our local gradient.
Thus, if the triangle OGxGy is same or similar to the triangle
OG

′

xG
′

y , they are considered as the same feature. The PC-
SIFT descriptor is invariant to the illumination or color trans-
formation. As in the standard SIFT descriptor, the PC-SIFT
descriptor is built as histograms with 128 dimensions.
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Fig. 1. The new color space and PC-SIFT descriptor .

Finally, the matching process is performed for the built
local descriptors by finding the nearest neighbor for each pair
of feature positions. After rejecting outliers, we can estimate
the correspondences between two images, or the object pose,
when the geometry is known.



4. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we use the “Amsterdam
Library of Object Images (ALOI)” [14] which is an image
database of colored objects. ALOI contains a large number of
objects under different imaging conditions, namely, different
illumination directions, illumination intensities, illumination
colors, and object viewpoints.

We give in Fig.2 (a) and (b) visual results under different
illumination color and illumination directions and intensities
with our PC-SIFT descriptor. The number of total matches
and correct matches with PC-SIFT, CSIFT [8] and standard
SIFT under different illumination color and illumination di-
rections and intensities are presented in (c) and (d). There’re
12 different color temperature cases and 8 different illumina-
tion sources settings for one test object, but it’s unchanged of
the object position. Our model PC-SIFT has a highest per-
formance, because PC-SIFT can detect more feature points
under the new color space. We can observe that the distance
of the lines between total matches and correct matches, the
PC-SIFT distance is the smallest, express that the PC-SIFT
descriptor is most stable one. In Fig.2 (e) and (f), the recall
precision of PC-SIFT, CSIFT and standard SIFT as a function
of the total number of matches is given, where recall precision
is the ratio between the number of correct matches and num-
ber of possible matches. The total number of matches can be
varied by changing the threshold for the maximum allowed
distance between two descriptors. Our algorithm consistently
performs better than the other approaches on all test images.
We also analyze the performance on the database, as Fig.2
(g) and (h) shows, we select 200 images, and the number of
the correct matches with the three methods are shown, sorted
by the correct mean matches number of the three methods in-
creasing. For most cases, our method PC-SIFT is better than
the other two descriptors. There’re 12 cases that CSIFT is bet-
ter than PC-SIFT among 400 cases under different illumina-
tion conditions. We can conclude that the proposed approach
performs better than standard SIFT and the CSIFT method.

5. CONCLUSION

In this paper, we introduce PC-SIFT as a novel color-based
local invariant feature descriptor for the purpose of combin-
ing both color and geometrical information in image match-
ing. We achieved the color and illumination invariance by
using a perception-based color model [10], and the geometri-
cal invariance is achieved by building PC-SIFT using a struc-
ture similar to that of the SIFT descriptors. Evaluation results
showed that PC-SIFT is superior to standard SIFT and CSIFT
for color images under illumination changes and proved the
high performance of PC-SIFT.
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(a) Result under different illumination color (b) Result under different illumination directions and intensities
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(c) Number of the detected and matched keys under different illumina-
tion colors
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(d) Number of the detected and matched keys under different illumina-
tion directions and intensities
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(e) Recall precision of detected features as a function of the total number
of matches under different illumination colors
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(f) Recall precision of detected features as a function of the total number
of matches under different illumination directions and intensities
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(g) Number of correct matches for the illumination colors data base
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(h) Number of correct matches for the illumination directions and inten-
sities data base

Fig. 2. Evaluation results of matching under varying illumination conditions compared with PC-SIFT, CSIFT and SIFT


