
Universal Web-Based Tracking for Augmented
Reality Applications

Yannic Bonenberger, Jason Rambach, Alain Pagani, and Didier Stricker

German Research Center for Artificial Intelligence (DFKI)
Kaiserslautern, Germany
Jason.Rambach@dfki.de

Abstract. Augmented Reality (AR) is a growing technology which be-
gins to reach its maturity and address a broad spectrum of areas. How-
ever, current augmented reality applications still tend to be confined to
a single use case or a single set of devices. In this paper, we explore web-
based augmented reality systems using a single cross-platform binary to
address a wide range of devices, which can dramatically decrease the
developmental effort to create applications and therefore help to satisfy
the growing demand for them. To this extent, we discuss the implemen-
tation of a feature tracking system using WebAssembly and evaluate its
real-time capabilities on a wide range of devices and operating systems.
Additionally, we also demonstrate a simple AR application making use
of our tracker.

Keywords: Augmented Reality · Web-based · 6DoF Pose Tracking

1 Introduction

Augmented Reality (AR) is an emerging technology combining virtual scenes
with the real world [5]. With the progress in mobile computing devices like
smartphones or tablets in recent years, there is a growing demand in AR appli-
cations in various consumer-oriented fields like entertainment or education, and
also in other areas like industrial construction and maintenance or medicine and
rehabilitation [11, 8, 26, 10].

The main enabling technology for an AR system is a 6 Degree of Freedom
(6DoF) pose estimation and tracking system. Knowledge of the camera pose
allows for correct placement of virtual augmentations in the real world [23].
Model-based tracking approaches use a predefined target model for localization
[25] while Simultaneous Localization and Mapping(SLAM)-based approaches op-
erate without prior knowledge of the environment meaning that it also needs to
be uncovered in parallel to the localization [20]. An advantage of model-based
systems is the reduced complexity and the ability to create AR content that
is specific to the tracked model, while SLAM systems can provide localization
out-of-the-box without any user involvement.

There is a large number of devices like smartphones or tablets with at least
one camera and sufficient computing power which are capable of running AR



2 Bonenberger et al.

Fig. 1. Our application running on a smartphone.

software. These devices have one major issue: They run many different operating
systems and therefore have their own ecosystem, most of them not compatible
with other ones. An example thereof is ARKit [9] which is developed by Apple
and only supports the latest generation of iOS devices. Users with older devices
will not be able to run applications using these features, even though lots of
these devices have sufficient computation power to run them. Smartphones and
tablets from other brands are also excluded from running these applications. For
users with Android devices, there is ARCore [13] which only supports the latest
generations of Android smartphones from vendors like Samsung or Google. It
is even more complicated if developers want to bring their applications to the
desktop. There is, however, one ecosystem that all of the mentioned devices
support: And this is the WorldWideWeb. The WorldWideWeb was developed
by Tim Berners-Lee and Robert Cailliau at CERN in 1990 [6, 7] and grew from
a platform to access static HTML files to a platform with support for large
applications which can do most of what native applications can [14].

A significant milestone was the recent addition of WebAssembly, “a binary
instruction format for a stack-based virtual machine” [3, 17] which aims to ex-
ecute at native speed on a wide range of platforms. It is available in all major
browsers including Google Chrome, Microsoft Edge, Mozilla Firefox and Apple
Safari [4]. With these technologies, it is possible to write fully functional AR
applications which can replace native applications on the desktop and mobile
devices. This has the potential of reducing the amount of work and therefore the
costs to develop an augmented reality application, which is eventually necessary
to satisfy the growing demand.



Universal Web-Based Tracking for Augmented Reality Applications 3

In this paper, we investigated whether it is possible to develop augmented
reality applications using only technologies provided by the modern web platform
without additional plugins or usage of particular browsers with built-in support
for AR [22, 15, 16]. To demonstrate this, we developed a simple model based
AR application using traditional web languages like HTML5 and ECMAScript
as well as compiled languages like C, which could traditionally only be used to
create native applications, and compile them to WebAssembly using Emscripten
(Figure 1). To evaluate whether the performance of such applications is sufficient
for use in AR, we compared the performance of our implementation if we compile
to a native binary to the performance of our implementation if we compile to a
WebAssembly binary.

2 Related Work

Building AR systems using web technologies has traditionally been very chal-
lenging because browsers did not provide sufficient speed to run these computa-
tionally heavy applications. To our knowledge, this is the first paper presenting
a purely web-based approach running in standard browsers without additional
plugins. However, some approaches for applications using a browser to display
their interface have been presented. In [31], a prototype of an AR system with a
web-based client was presented. To use this application, users use the front-end
to capture images of the scene which are then uploaded to a server, processed,
and the augmented result is sent back to the client. While this approach can pro-
vide high-quality augmentations, it has the disadvantage that only images can
be processed and, due to possibly slow network connections, real-time processing
is impossible.

Previous research also investigated whether it is possible to use browser plu-
gins like Flash which have more computational power than ECMAScript for AR
systems [29, 21]. While this approach is similar to ours, it has the disadvantage
that it is not available in all browsers across all platforms and that users must
install plugins before they can use the application.

Another highly interesting concept are browsers with built-in support for
AR [22, 15, 16]. However, these approaches require that users install dedicated
applications on their devices to be able to use such systems. To our knowledge,
none of these applications are available for download and must be compiled from
source which makes them unusable for arbitrary users. It is also very likely that
these dedicated browsers will be abandoned once browsers add native support
for AR [19].

Other research in the field of AR and the web investigated how web-based
systems can be utilized to create content for native augmented reality applica-
tions [12, 30] or whether it is possible to embed web technologies into native
AR systems to create interactive augmentations [18]. Researchers have also in-
vestigated how web-based AR systems can protect the privacy of their users
[24].



4 Bonenberger et al.

3 Implementation

Fig. 2. Architecture of our System, split into UI-Thread (left) and Web-Worker (right).

In this section, we will discuss the architecture and implementation of our
application and the difficulties we encountered. For our implementation we used



Universal Web-Based Tracking for Augmented Reality Applications 5

a combination of well-established web technologies like HTML5 or ECMAScript
and technologies more recently added to the web platform like WebRTC, which
provides access to the camera, or WebAssembly, which is a platform independent
binary instruction format that aims to achieve native-like execution speed.

The content of this section is divided into these three parts: First, we will
present the overall architecture of our system and discuss the challenges of build-
ing AR systems in the browser. Then, we will present the point tracking system
we used in our application, and in the end, we will briefly discuss the details of
our simple web-based AR system.

3.1 System Architecture

The main challenges to building web-based AR are tight constraints of compu-
tational power available in the browser and the unique concurrency model of
ECMAScript. ECMAScripts concurrency is based on a queue-based model of-
ten called event-loop. This means that the runtime “contains a message queue
which stores a list of messages to be processed and their associated callback
functions. These messages are queued in response to external events (...) given
a callback function has been provided” [27]. With the more recent addition of
Promises, which are so-called microtasks and have entirely different semantics
than regular tasks in the event-loop, ECMAScripts execution model got even
more convoluted. To complicate things further, the main thread is also used by
the browser to parse pages from HTML into a DOM tree or to calculate the
layout of a website. In order to be able to implement AR systems on a platform
using this concurrency model, we split our application into multiple independent
subsystems which can run completely independently and executed them on two
different threads: A UI-thread, which is also the default thread browsers use to
execute code and render the page on, and a background thread we created using
the WebWorker API [2]. As it can be seen in Figure 2, we reduced the number
of computations on the UI-thread to a minimum and only executed what is di-
rectly related to the user-interface of our application. All computations related to
tracking objects between frames are executed in a dedicated WebWorker which
communicates with the other thread asynchronously.

After the browser finished downloading the initial website, we ask the user for
their permission to use their camera. Since this is mandatory for our application,
we do not proceed further if this permission is denied. When our application has
the permission to use the camera, a dedicated WebWorker is created and the
browser downloads and executes our separate worker script. Additionally, we
immediately send an initialization message to the newly created worker which
then downloads the external WebAssembly module. When the worker is fully
initialized, it sends a message back to the UI-thread to indicate that it is ready
to receive frames. When this message is received by the UI-thread, we start
capturing frames from the camera and send them to the worker thread for pro-
cessing. For convenience, we use a fixed frame rate, augment the message to
the worker with the current timestamp and drop the frame in the worker if it
is older than a predefined amount of time. All other frames are used to track



6 Bonenberger et al.

features and then send back to the UI-thread. If too many features are lost, or
if there was no previous frame, the current frame is also used to search for new
features. Every time the UI-thread receives a processed frame, the user interface
is updated and the image is shown to the user. With this architecture, we were
able to achieve sufficient computational power and have an interface which is
responsive to interactions with the user.

3.2 Tracking

We decided to use the well known Kanade-Lucas-Tomasi (KLT) algorithm [28]
for our tracker. We use KLT tracking to follow image patches between consec-
utive frames by performing a local search to minimize the photometric error
between the patch in the previous image and its match in the current one (see
Figure 3). Initial evaluations revealed that processing a single image is suffi-
ciently fast and we do not need to split the algorithm into independent parts
which can be executed asynchronously to use KLT in our applications. However,
existing implementations such as the one from OpenCV could not be ported
easily, thus we decided to make our own implementation. To be able to perform
a fair evaluation of the performance of our system, we ensured that the imple-
mentation of our tracker does not make any assumptions about the architecture
it is executed on.

Fig. 3. KLT feature tracker, from the first frame on the left to the last frame on the
right.

3.3 Application

The architecture of our application is based on the tracker architecture presented
in 2. As a marker for pose estimation, a 2D image rich in texture is used. Thus,
the estimated pose is given with respect to a coordinate system defined by this
marker. The use of an image with natural features allows to have a registration
step where a user can select his own image to be used for tracking. The tracking
application follows the principles of other systems such as [25]. A set of ORB
features are stored along with their 3D positions in order to register the tracking
target. To start the application, we initialize the camera and ask the user for



Universal Web-Based Tracking for Augmented Reality Applications 7

their permission. If the user grants us permission to use the camera, we peri-
odically capture a frame, extract features from this frame and match them to
registered ORB features of our marker. Once the number of matches is above
a certain threshold, we compute a homography between the marker and the
picture, project the boundaries of the marker into the frame, and filter outliers
which are outside this projection, as it can be seen in Figure 4. Having estimated
an initial pose once enough inliers are found, we use KLT to track them from
frame to frame which ensures a fast update of the pose. The tracked pose can be
used to render virtual augmentations on the marker. As an example, we draw a
virtual cube over the marker as can be seen in Figure 4.

Fig. 4. On the left, projection of the boundaries of the marker into the scene and an
example of a virtual cube rendered on top of our marker on the right.

4 Evaluation

In this section, we present and discuss the results of our runtime evaluation of the
proposed KLT tracker. To get a comprehensive overview of the performance of
our application, we executed our tests on various common devices and operating
systems and across all popular browsers available on these platforms. Primarily,
we used a MacBook Pro (Mid 2015) with an Intel Core i7 processor at 2.8 GHz
and 16 GB RAM, running macOS 10.13, a desktop PC with an Intel Xeon E5
processor at 2.6 GHz running Windows 10 respectively Ubuntu 16.04, an iPhone
X running iOS 11 and a Samsung Galaxy S8 running Android 7 to run the tests.
We also tested our application on various other devices, including low-end mobile
devices, which showed results comparable to the results we observed during our
runtime evaluation.



8 Bonenberger et al.

The runtime performance was evaluated using a single test binary, once com-
piled to a native binary and once to a WebAssembly module. Both binaries were
produced using the highest optimization level available. To account for differ-
ences in the architectures of the underlying platforms, we used a fixed set of test
images which were inlined into the binary.

Analysis of the raw data we collected during our tests revealed that the time
required to track features in the first frame is roughly double the time required
to track features in all subsequent frames. Investigations revealed that this is
caused by the fact that we compute the gradient image for both pictures for the
first image, and only for one picture in all other images. Due to this, we decided
to exclude the first image from our analysis.

Table 1. Runtime performance across different browsers and operating systems.

Native Chrome 66 Edge 17 Firefox 60 Safari 11.1 Node.JS 10

macOS 7.2 ms 13.6 ms N/A 9.6 ms 10.1 ms 10.9 ms

Windows 9.5 ms 17.6 ms 14.1 ms 13.9 ms N/A 15.8 ms

Ubuntu 8.0 ms 13.2 ms N/A 13.1 ms N/A 11.4 ms

iOS N/A 12.4 ms 12.4 ms 12.3 ms 12.5 ms N/A

Android N/A 15.2 ms N/A 14.9 ms N/A N/A

In Table 1, we present the average time in ms to perform the computations
to track points from one image to another, which is the central part of our
application. We observe that the runtime of the native binary is 36.9% lower
than the runtime in browsers. However, the average time of 13.4 ms required
for the tracking in the browser indicates that a frame rate of 74 fps can be
achieved. This high frame rate leaves sufficient time for the rendering of quality
augmentations and other application content.

Further investigations revealed that roughly 80% of the time we need to pro-
cess a frame is spent computing the gradient image for the KLT. Given that we
currently run these computations on the CPU, we expect that the frame rate
will further increase when we can use OffscreenCanvas [1] to accelerate this on
a GPU. It is also worth mentioning that getting precise timestamps in browsers
requires several switches in the execution context and the operation is therefore
slightly more expensive than its native equivalent. To mitigate the effects of the
recently published processor exploits spectre and meltdown, browser vendors
also reduced the maximum precision of timestamps in the browser. However,
investigations of the impact of these changes revealed that we were still able
to compute time differences with sub-millisecond precision. Given that our mea-
surements showed a runtime that was a lot higher than that, we think that these
changes did not affect our evaluation.



Universal Web-Based Tracking for Augmented Reality Applications 9

5 Conclusion

In this paper, we investigated the possibility to develop a universal cross-device,
cross-browser based AR application using only web development tools. Our pro-
posed system is built using WebAssembly, and implements a marker based KLT
tracker for AR without using common computer vision libraries that are still
unavailable or partially functional for Web Assembly. A runtime evaluation per-
formed a selection of commonly used devices for AR, based on different operat-
ing systems proved the general feasibility of the approach. Future work includes
dealing with the rendering of more complex virtual models for more demanding
AR applications, and the improvement of tracking and user experience by fur-
ther optimization, addition of camera intrinsics self-calibration and usage of 3D
objects as tracking targets instead of 2D marker images.

Acknowledgments

This work has been partially funded by the Federal Ministry of Education and
Research of the Federal Republic of Germany as part of the research projects
PROWILAN and BeGreifen (Grant numbers 16KIS0243K and 16SV7525K).

References

1. Offscreencanvas (2018), https://developer.mozilla.org/en-
US/docs/Web/API/OffscreenCanvas/

2. Web worker api (2018), https://developer.mozilla.org/de/docs/Web/API/Web Workers API/
3. Webassembly (2018), https://webassembly.org
4. Webassembly (2018), https://developer.mozilla.org/en-US/docs/WebAssembly/
5. Barfield, W.: Fundamentals of wearable computers and augmented reality. CRC

Press (2015)
6. Berners-Lee, T., Cailliau, R.: Worldwideweb: Proposal for a hypertext project (11

1990), https://www.w3.org/Proposal.html
7. Berners-Lee, T., Fischetti, M.: Weaving the Web: The original design and ultimate

destiny of the World Wide Web by its inventor. DIANE Publishing Company
(2001)

8. Billinghurst, M., Clark, A., Lee, G., et al.: A survey of augmented reality. Foun-
dations and Trends in Human–Computer Interaction 8(2-3), 73–272 (2015)

9. Buerli, M., Misslinger, S.: Introducing ARKit-Augmented Reality for iOS. In: Ap-
ple Worldwide Developers Conference (WWDC17). pp. 1–187 (2017)

10. Chen, L., Day, T., Tang, W., John, N.: Recent Developments and Future Chal-
lenges in Medical Mixed Reality. In: IEEE International Symposium on Mixed and
Augmented Reality (ISMAR). pp. 123–135. IEEE (2017)

11. Dunleavy, M., Dede, C.: Augmented reality teaching and learning. In: Handbook
of research on educational communications and technology, pp. 735–745. Springer
(2014)

12. Feuerstack, S., de Oliveira, Á., dos Santos Anjo, M., Araujo, R.B., Pizzolato, E.B.:
Model-based design of multimodal interaction for augmented reality web applica-
tions. In: Proceedings of the 20th International Conference on 3D Web Technology.
pp. 259–267. ACM (2015)



10 Bonenberger et al.

13. Google: Arcore overview (2017), https://developers.google.com/ar/discover/
14. Google: Web fundamentals (2018), https://developers.google.com/web/fundamentals/
15. Google: Webaronarcore (2018), https://github.com/google-ar/WebARonARCore/
16. Google: Webaronarkit (2018), https://github.com/google-ar/WebARonARKit/
17. Haas, A., Rossberg, A., Schuff, D., Titzer, B., Holman, M., Gohman, D., Wagner,

L., Zakai, A., Bastien, J.: Bringing the web up to speed with WebAssembly. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 185–200. ACM (2017)

18. Hill, A., MacIntyre, B., Gandy, M., Davidson, B., Rouzati, H.: Kharma: An open
kml/html architecture for mobile augmented reality applications. In: 9th IEEE
International Symposium on Mixed and Augmented Reality (ISMAR). pp. 233–
234. IEEE (2010)

19. Jones, B., Waliczek, N.: Webxr device api (2018), https://immersive-
web.github.io/webxr/

20. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
6th IEEE and ACM International Symposium on Mixed and Augmented Reality,
ISMAR. pp. 225–234. IEEE (2007)

21. Leppänen, T., Heikkinen, A., Karhu, A., Harjula, E., Riekki, J., Koskela, T.: Aug-
mented reality web applications with mobile agents in the internet of things. In:
Eighth International Conference on Next Generation Mobile Apps, Services and
Technologies (NGMAST). pp. 54–59. IEEE (2014)

22. MacIntyre, B., Hill, A., Rouzati, H., Gandy, M., Davidson, B.: The Argon AR
Web Browser and standards-based AR application environment. In: Mixed and
Augmented Reality (ISMAR), 2011 10th IEEE International Symposium on. pp.
65–74. IEEE (2011)

23. Marchand, E., Uchiyama, H., Spindler, F.: Pose estimation for augmented reality: a
hands-on survey. IEEE transactions on visualization and computer graphics (2015)

24. Molnar, D., Vilk, J., Ofek, E., Moshchuk, A., Wang, J., Gal, R., Shapira, L., Burger,
D.C., MacIntyre, B., Livshits, B., et al.: Protecting privacy in web-based immersive
augmented reality (Jun 13 2017), uS Patent 9,679,144

25. Rambach, J., Pagani, A., Stricker, D.: [POSTER] Augmented Things: Enhanc-
ing AR Applications leveraging the Internet of Things and Universal 3D Object
Tracking. In: 2017 IEEE International Symposium on Mixed and Augmented Re-
ality (ISMAR-Adjunct). pp. 103–108. IEEE (2017)

26. Schneider, M., Rambach, J., Stricker, D.: Augmented Reality based on Edge Com-
puting using the example of Remote Live Support. In: IEEE International Confer-
ence on Industrial Technology (ICIT) (2017)

27. Swenson-Healey, E.: The javascript event loop: Explained (2013),
https://blog.carbonfive.com/2013/10/27/the-javascript-event-loop-explained/

28. Tomasi, C., Kanade, T.: Detection and tracking of point features (1991)
29. Vert, S., Dragulescu, B., Vasiu, R.: LOD4AR: Exploring Linked Open Data with

a Mobile Augmented Reality Web Application. In: International Semantic Web
Conference (Posters & Demos). pp. 185–188. Citeseer (2014)

30. Walczak, K., Wiza, W., Wojciechowski, R., Wójtowicz, A., Rumiński, D., Cellary,
W.: Building Augmented Reality Presentations with Web 2.0 Tools. In: Interna-
tional Joint Conference. pp. 595–605. Springer (2015)

31. Wang, C., Feng, Y., Guo, Q., Li, Z., Liu, K., Tang, Z., Tung, A., Wu, L., Zheng,
Y.: ARShop: a cloud-based augmented reality system for shopping. Proceedings of
the VLDB Endowment 10(12), 1845–1848 (2017)


