
AN ARCHITECTURE FOR PROTOTYPING AND APPLICATION DEVELOPMENT OF
VISUAL TRACKING SYSTEMS

Mario Becker, Gabriele Bleser, Alain Pagani, Didier Stricker, Harald Wuest

Fraunhofer IGD, Darmstadt, Germany
email: firstname.surname@igd.fraunhofer.de

TU Darmstadt, Interactive Graphics Systems Group, Germany

ABSTRACT

In this paper we introduce a novel architecture for rapid
development and assessment of advanced 3D visual
tracking systems. Indeed, we notice that it does not exist up
to now a universal tracking approach that fulfills the
requirements of all possible application scenarios at the
same time. On contrary, very specific and performing
solutions can be developed for given situations and uses.
Therefore, software for visual tracking must be designed as
a highly flexible system that can be quickly re-configured
in order to enable the development of optimised solutions
in terms of accuracy, robustness, frame rate and delay.
to this purpose we designed an architecture that offers
many functionalitys, which can be combined together, and
thus build a new processing chain. The overall system
offers numerous advantages, such as interactive
programming, real-time access to the data and parameter at
runtime.
Index Terms— architecture, middleware, 3D tracking.

1. INTRODUCTION

Precise and fast tracking of TV-cameras represents a key
technology for 3D-TV. Several systems have been
developed in the past such as “free-d” from the BBC [1].
Nevertheless, these systems require special infrastructure in
the environment such as markers or emitters, what restrict
strongly their usability and the range of applications. We
intend on contrary to develop marker-less solutions that use
only natural features and a priori 3D information about the
scene [2]. In order to get more stable results, in particular
during strong motion, we use a tiny inertial sensor mounted
onto the camera [3]. The development of such a system is
challenging; we consider that the design and
implementation of a powerful software architecture, which
offers reliability, fast prototyping, and 3D visualisation of
the tracking results to be a key issue.
The system is dedicated to researchers looking for fast
prototyping possibilities as well as advanced users who like
to adapt given tracking procedures to their specific
application scenario.
This paper first presents related work and reviews very
briefly existing architecture approaches. It follows an
analysis of our requirements and the mapping to software
functionalities. Our approach is described in paragraph 4.

Paragraph 5 presents major implementation issues and
finally two examples of instances of the final software.

2. RELATED WORK

Related existing software architectures can be found in
similar domains such as computer vision, robotics, and
virtual reality systems.
One well-know system is OpenCV [4], which is actually
designed as a classical C/C++ library and offers a large
number of utilities and implemented applications. It
nevertheless does not support higher-level programming or
prototyping and is purely restricted to computer vision.
Architectures for mobile autonomous robots are at the first
sight closer to our needs. Those architectures are often built
in a hierarchical manner; the data flow is often linear from
the sensor over the planning to the actuators modules. Gat
[5] proposed a three-layer approach, which consists of a
Controller, Sequencer and Deliberator and provides a
generic concept for navigation software for robotics.
In the 3D rendering domain, highly configurable systems
exist [6]. Based on the X3D and VRML standards, they
allow rapid development of VR applications with X3D
coding and java scripting. Unfortunately they do not
contain extensive image processing or even visual tracking
possibilities. Most of these systems are optimised to send
data (mostly static) down the graphics hardware and use
only small amounts of data to control their behaviour. In a
vision system we need to handle large amounts of image
data and like to think of stream processing, which is why
we choose not to enhance one of these systems but build a
new architecture. However, we consider such systems our
archetype in terms of runtime configuration and end user
application building.

3. MAPPING REQUIREMENTS TO
FUNCTIONALITIES

1. Off-line requirements
Fast prototyping: 3D marker-less tracking is highly
complex, and today it does not exist one approach that
covers all the possible scenarios. Therefore, one must have
the possibility to configure and design a tracking system
quickly, at a high-abstraction level and without the need of
any re-compilation.

1-4244-0722-2/07/$20.00 ©2007 IEEE

System extension: Any extension of the system at
programming language level should not require changes in
the overall system.
Integration in VR/AR systems: The final tracking system
must be easy to integrate in an existing system and offer
different mechanisms and APIs for that integration.

2. Run-time requirements
Performance: the main requirement is of course
performance. The complexity and flexibility of the system
should not restrict high performance.
Parallelization: In particular multi-core processors should
be supported in an efficient way. Parallelization should be
independent from the application and thus occurs
automatically.
Reliability: The system designed interactively must be
very reliable. If hardware components such as sensor or
system sub-components are not available it should not
stuck the overall system. Re-start of sub-component should
be possible.
Testability and tuning: Marker-less tracking is complex,
especially if several sensors are used. In order to test and
tune the system, each component’s parameter and data
should be accessible and modifiable during the runtime.
Visualisation: The targeted applications are TV-studios or
augmented reality set-ups. For validation and usability the
system should offer real-virtual world registration as well
as basic 3D visualisation functionalities.

4. DESIGN APPROACH

1. Core concepts
To meet the requirements, we abstract tracking procedures
into classes with a fixed interface. These are called
“Actions” and contain atomic pieces of an algorithm like
an image processing step or feature extraction. Those can
be easily reused in other tasks or as a stand alone
processing method. The Actions exchange data through a
global shared memory, which we call “Dataset”. All objects
in the Dataset are identified by a unique key which is used
by the Action to fetch the data before execution. The
Actions are put together to form algorithms by defining
data dependencies, which is done by assigning keys to their
input and output ports. Another view of this concept is the
top-down view: the algorithms are split into small reusable
units and encapsulated by the Action interface.
The indirection over a key element for data access allows
the use of a graphical interface or a scripting language to
setup the data-flow. The Action interface also allows export
of internal variables as attributes, these can be viewed and
changed in the runtime system to tune process parameters.

2. Parallelization and synchronization

The system offers three different levels of parallelisation, in
order to support state of the art multi-core and multi-
processor systems.
The lowest level consists in the classical and straight
forward multi-threading implementation achieved by the
developer to improve performance of a specific algorithm.
The mid-level is done automatically and is based on
dependency analysis of the dataflow. As a result we get a
dependency graph which is used to select Actions with
independent data inputs, able to run in parallel without any
conflicts. This method can be seen from the outside as a
sequential processing and does not require precautions to
protect the data from access by simultaneous running
threads, due to the precondition of having independent
data. The method does not require any knowledge about the
algorithm and is the easiest to use. Furthermore the user
can develop the tracking system in a clear hierarchical
manner (top down). Although this method might not
produce an optimal result, it is a convenient way to
improve performance.
As a third method, our system provides a “Component”
which is a configuration of Actions, executed in its own
thread. This concept is important for tracking with devices
running at different frame-rates, like inertial sensors (e.g.
100Hz) and cameras (e.g. 25Hz). In such a case the sensor
interface and a pose estimation algorithm, like a Kalman
filter, would run in one component at sensor framerate,
while the slower camera and vision part runs in another
component.
In order to reduce unnecessary data exchange between
these components, the data objects incorporate a locking
mechanism. The same mechanism also handles signals to
notify other components about changes in the data.
Additionally our data objects can be time stamped to
identify related data in an asynchronous setup, where
multiple sensor inputs must be handled.

3.High-level programming and prototyping
New Action and data classes built into shared libraries can
be added to our framework by loading them during
runtime. This makes the system extendable without
rebuilding it, allowing enhancements by adding more
problem specific Actions while reusing the existing Actions
for common processing steps.
All Actions can be instantiated from a TypeFactory [7].
This allows creation by name, i.e. Actions can be created
"dynamically" from a GUI or a configuration file.
Once the tracking procedure is set up it can be saved to a
XML configuration file for later usage within a runtime
system or for further editing. The runtime system can be a
device backend in a 3D visualisation system.
Image1 shows a snapshot from our GUI front-end. It can be
used for algorithm configuration and execution. It also
serves as a testbed for newly implemented processing steps
and provides generic methods to gain insight into the data
as it is processed. Furthermore data specific viewers can be

added together with the processing steps to visualise
intermediate data and results. In addition it takes time-
samples of the active processing steps which is a first
instance in finding performance bottlenecks.

[image1] GUI at work, the left shows the attribute editor, the
right the running actions and contents of the dataset.

5. TRACKING FRAMEWORK

5.1 Basic steps of 3D tracking
In order to simplify the implementation of tracking
algorithms in the presented architecture, we define a
tracking framework consisting of several base classes
representing the major steps of tracking procedures. We
identified the following steps which are common to all
visual 3D tracking systems:
Image processing: This base class contains methods to
modify the incoming video images to fit the requirements
of the following processing steps.
Feature detection: At this step higher level information
such as interest points of an image are generated. This step
is specific to a given tracking procedure.
Tracking, matching or classification: The process of
correspondence determination is very specific to a tracking
procedure and can consists in searching features seen in the
past images (tracking), comparison with reference data
(matching) or features sorting (classification).
Pose estimation: Computation of a camera pose with a
given set of correspondences.
Between each of these steps, we defined dedicated data
blocks, which are passed from one processing step to
another. Additionally, an Action might need static data
(e.g. object or scene descriptions). This kind of data can be
passed to the Action using the Attributes mentioned above.

5.2 Definition of the 3D environment
The basic idea is that every tracker is fed with a (eventually
preprocessed) live video image and a world description,

containing one or more objects to be tracked. The tracker(s)
then tries to track all tracked objects of the world based on
their object models description. The tracking results are
written into a pose object in the Dataset.
In our system the real world and our cameras or objects to
be tracked are represented by a few elementary data
structures. These are the following:
World – A “World” is a container for the object
descriptions. It also defines a reference coordinate system
for the tracking.
Tracked object – A “Tracked object” is used to describe a
real world object that has to be tracked. It consists of one or
more object models containing the necessary data for
tracking with the different methods.
Object model - The “Object model” represents concrete
data for tracking (some instances are listed in section 6). A
tracked object can then be described by one or more object
models, of different or same type. E.g. an object which will
be tracked can be represented by 3 Markers, 1 KLT model
and 1 line model, so it can be tracked with any of these
methods. The tracked object also contains a 3D-pose
representing the translation and rotation of the camera in
object coordinates, a tracker uses this pose to store the
output of the tracking process.

6. BUILDING BLOCKS FOR VISUAL TRACKING
ALGORITHM DEVELOPMENT

For our common processing steps we have a library of
implementations, a few of them are listed in the following
table:
Image processing:
gradient image, image pyramid, binarisation, edge
detection, video sources from file and cameras, …
Feature detection:
Harris, KLT [8], SURF [9]
Correspondence generation:
tracking = KLT point tracking, line tracker
matching = match features with references - MSER [10]
classification = e.g. randomised trees [11]
Pose computation:
generic pose calculation: Kalman Filter, RANSAC (linear
or non linear estimation with inliers/outliers tests)
linear pose calculation: HEIV [12]
none linear pose estimation (Levenberg-Marquardt)
Based on this selection from our library we now outline
two tracking procedures.

6.1 KLT tracker
This tracker consists of a feature extractor which detects
interest points in the image and cuts out image patches
acting as the descriptor for a point.
The correspondence generation part tracks these features in
2D under affine invariance with brightness and contrast
compensation. The 2D/3D correspondences are determined

by back-projection into a given 3D model or by
triangulation of 2D points from different views. This can be
combined with non linear pose estimation and RANSAC to
calculate the camera pose.

6.2 Line tracker
The line tracker [13] projects a “wireframe” 3D model of
an object into an image and uses orthogonal search for
gradient extrema at equidistant control points at the model
lines to fit the model into the image and produces 2D/3D
correspondences, which can be fed into the pose
computation. Since this tracker does not use features in the
sense of points in the image, it has no feature extraction
part.

6.3 Combining tracking methods
It is also possible to combine a frame to frame tracker, like
the KLT, with an absolute tracker, such as a line tracker, to
compensate drift. Such combinations are very powerful
because they can benefit from all tracking methods to
overcome problem situations where a single method would
fail.

The two procedures described in the last two sections can
be combined to form a tracking system, which uses the line
method for initialisation after start up or for re-initialisation
when the track was lost, and KLT tracking for real-time
frame to frame processing. The details about this tracking
procedure are given in [2].

[image2]: line tracker and KLT, the red lines in the top right
part show the fitted line model, the top right shows KLT
features. The bottom left image shows the camera image
overlaid with the 3d object, bottom left is a visualization of
intermediate tracking results (uncertainties of the KLT point

7. RESULTS

The overall performance of our tracking systems highly
depends on the type of tracking and the algorithms in use.

The framework provided, can be used to efficiently
implement optimisations and multithreaded algorithms
using today’s multicore processing environments, thus
improving performance with less effort. The actual
performance achievements can be looked up in the papers
describing our tracking implementation [2][3][13].

8. CONCLUSION

In this paper we presented a novel software architecture
which allows us to quickly implement new real-time
tracking procedures, and provides a comfortable
environment for evaluation and tuning. With the
architecture we are able to develop complex and
challenging tracking system and thus push the current state
of the art in this area.

REFERENCES

[1] G A Thomas (BBC), J Jin, T Niblett, C Urquhart (The Turing
Institute), “A versatile camera position measurement system for
virtual reality TV production”, proceedings of IBC 1997
[2] G.Bleser, H.Wuest, D.Stricker, “Online camera pose
estimation in partially known and dynamic scenes”, proceedings
of ISMAR 2006
[3] J. Chandaria at al, “REAL-TIME CAMERA TRACKING IN
THE MATRIS PROJECT”, proceedings of IBS 2006
[4] OpenCV: “http://www.intel.com/technology/computing/
opencv/index.htm”
[5] E. Gat. “Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile
robots” Conference on Artificial Intel-ligence, 1992
[6] Behr at. al., “Utilizing X3D for Immersive Environments”,
Proceedings International Conference on 3D Web Technology
(Web3D) 2004. p.71-78
[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns”, Addison-Wesley, 1994
[8] Bruce D. Lucas and Takeo Kanade. “An Iterative Image
Registration Technique with an Application to Stereo Vision.”
International Joint Conference on Artificial Intelligence, 1981.
[9] Herbert Bay1, Tinne Tuytelaars2, and Luc Van Gool12 ,
“SURF: Speeded Up Robust Features”, ETH Zurich
[10] J. Matas, O. Chum, M. Urban, T. Pajdla, “Robust wide
baseline stereo from maximally stable extremal regions”, BMVC,
384-393, 2002.0.3
[11] V. Lepetit, P. Lagger, P. Fua, “Randomized Trees for Real-
Time Keypoint Recognition”, Conference on Computer Vision
and Pattern Recognition, San Diego 2005
[12] F. Porikli, O.Tuzel, P. Meer: “Covariance Tracking using
Model Update Based on Means on Riemannian Manifolds.”, 2006
Computer Vision and Pattern Recognition Conference, New York
City, NY, June 2006, vol. I, 728-735.
[13]Wuest, Harald; Vial, Florent; Stricker, Didier: “Adaptive Line
Tracking with Multiple Hypotheses for Augmented Reality.”
ISMAR 2005 : Proceedings of the Fourth IEEE and ACM
International Symposium on Mixed and Augmented Reality. p.
62-69

