
Approaches to Learning Object Oriented Instructional Design

Martin Memmel1, Eric Ras2, Klaus P. Jantke3, Michael Yacci4

1 German Research Center for Artificial Intelligence DFKI GmbH
Erwin-Schrödinger-Straße 57, 67663 Kaiserslautern, Germany

Martin.Memmel@dfki.uni-kl.de

2 Fraunhofer Institute for Experimental Software Engineering
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

Eric.Ras@iese.fraunhofer.de

3 FIT Leipzig at HTWK Leipzig
P.O.Box 30 11 66, 04251 Leipzig, Germany

jantke@fit-leipzig.de
and

Hokkaido University Sapporo, Meme Media Laboratory
Kita 13, Nishi 8, Kita-ku, Sapporo, 060-8628 Japan

 jantke@meme.hokudai.ac.jp

4 Rochester Institute of Technology
Rochester, NY 14623, USA

may@it.rit.edu

Learning Objectives
When reading this chapter, the reader will learn:

• the essentials of instructional design,

• the basics of learning objects,

• the challenges of learning object oriented instructional design,

• the multidimensional learning object architecture enabling instructional design, and

• implications for instructional design from the Software Engineering perspective.

Executive Summary
The use of learning objects is an emerging concept proven to be valuable in the areas of know
ledge management and elearning. Learning objects are a key technology building a bridge
between these two converging fields (Ras et al. 2005). In spite of their importance, the design of
learning objects, conceptually and technically, is often debated with little effort to fully describe
the learning or educational process. A lot of effort has been put in the definition of standards by
numerous institutions. However, ″key issues related to global content classification such as a
common schema, ontology, granularity, taxonomy, and semantics of learning objects which are
critical to the design and implementation of learning objects remain unsolved″ (Mohan, Daniel
2004).

Instructional design deals with setting up spaces in which human learners can be directly taught
and can guide their own learning experiences. It prepares learning paths such that learners with
different prerequisites, with different needs and desires, in varying moods and under widely un
foreseeable circumstances can find their way. Learning objects are building blocks for learning
spaces; they are constituents of individual learning paths. The field of instructional design and
development provides insights into the design of learning objects by enabling learning object de
signers to use existing terminology, models, and methods from instructional design.

Learning object oriented instructional design is a challenge that has to deal with several issues
such as syntax and semantics, granularity, and reusability. The concept of dynamic annotation is
a step towards a resolution of the retrieval and reuse dilemma. Dynamic annotation enables the
annotation of individual objects in such a way that these annotations describe sufficiently well
the meaning of a learning object. The granularity of learning objects has a crucial impact on the
ability to adapt, aggregate, and arrange content suiting the needs and preferences of the learner.
When deciding on which granularity to choose, the tradeoff between the possible benefits of re
use and the expense of cataloging is of crucial importance (Wiley 2000).

The multidimensional learning object architecture is a generic approach enabling adaptivity and
supporting instructional design. This architecture is based on different dimensions of adaptivity.
Smallest building blocks that are ″semantically not dividable″ and ″uniquely classifiable″ are the
central element of the presented architecture. They can be combined to other types of learning
objects and allow an instructor or a system to choose the variant that suits best the user’s goals,
needs, and preferences.

Many learning objects can be considered as components, and in some cases as software compon
ents. Hence, approaches from the field of Software Engineering have an impact on instructional
design. Technologies such as design patterns, frameworks, and product lines are integrated with
in a componentbased approach for instructional design. Design patterns are a good means for
making design ideas more explicit and hence applicable, developing learning objects for reuse by
following the component paradigm will increase their reusability, and the separation of concerns
by applying frameworks and product lines will decrease the complexity of instructional design
and its embodiment (i.e., reusing concrete learning objects).

Introduction
Learning objects are an emerging technology proven to be valuable in the areas of knowledge
management and elearning and they build a bridge between these two converging fields (Ras et
al. 2005). While there are numerous definitions of learning objects, almost all describe the func
tion of a learning object as ″facilitating learning.″ However, education and learning are them
selves terms that carry multiple meanings and unclear definitions, despite a century of research.
The design of learning objects, conceptually and technically, is often debated with little effort to
fully describe the learning or educational process.

Instructional design and development, as it has evolved in the United States as a discipline since
the late 1950’s, uses a systems methodology that focuses on clearly defined needs, goals, and
testable systems. Instructional design models often are internally consistent: they define goals
and methods to achieve those goals. Therefore, the field of instructional design and development
may provide insight into the design of learning objects by enabling learning object designers to ″
jumpstart″ the design process by using existing terminology, models, and methods from instruc
tional design.

In Europe, instead of ″instructional design,″ terms like ″didactic design″ are preferred. Didactic
after the ancient Greek, goes back to Wolfgang Ratke (15711635) and, slightly later, but much
more productive and influential, to Johann Amos Comenius (15921670), who published his Di
dactica Magna in 1628 (Latin version in 1638). Comenius’ work was, as he said, driven by the
motivation to guide teaching such that ″the teacher has less to teach, but learners learn more″
(Comenius 1638). So, from its very beginning, didactic design is seen as a pragmatic discipline
(Flechsig 1996; Jank, Meyer 2002).

The Basics of Instructional Design
In its simplest form, the goal and purpose of instructional design is to change the knowledge,
skills, or attitudes of students. Such a simple and direct purpose is often overshadowed by argu
ments over learning theory (the exact processes that we are trying to affect) or philosophy (to
what extent are we responsible for individuals, groups, society, lifelong learning, etc.).
Reigeluth describes the difference between instructional design theories and learning theories as
the difference between prescriptive and descriptive theories (Reigeluth 1983, Reigeluth 1999).
Instructional design uses theories (or models) in a practical, realworld way; the goals are to be
able to diagnose and prescribe instructional solutions that will achieve specific outcomes.

On the other hand, learning theories are descriptive theories; their purpose is to describe (scien
tifically or philosophically) a phenomenon. Of course, learning theory, and our understanding of
the learning process should (and generally does) underlie the ″prescription″ of instructional
design solutions. However, much like the field of medicine, instructional design is a field that
must create solutions even if our understanding of the underlying phenomenon is incomplete.
For this reason, learning theory is important, but not absolutely critical to the practice of instruc
tional design. Snelbecker cites Dewey (1929) who points out that education (or instruction in our
case) is a mode of practice – and is only indirectly guided by theories of learning. Despite the
fact that instructional design methods are based on theories or learning and performance, ulti
mately, the field of instructional design is pragmatic: the goal is to influence learning in real situ
ations, even if the theories of learning are not fully understood.

As stated earlier, the purpose of instructional design is to change a learner’s knowledge, skill or
attitude. For purposes of discussion in this chapter, knowledge refers to recall or paraphrasing
rote material. Gagne and Briggs, for example, referred to this as ″verbal information″ (Gagne,
Briggs 1979) while Merrill referred to this type of learning as ″rememberlevel″ (Merrill 1983).
This type of learning generally entails a simple written, pictorial, or verbal demonstration that ″
material has been covered.″ Skills, on the other hand, often constitute the most valuable, and dif
ficult, forms of learning. Skills are actionable internal algorithms that guide physical or mental
performance. Concept classification, problem solving, or physical procedures are all forms of
skill. Finally, attitudes refer to values and emotional physical and mental states that are either
learned (as in learning a cultural value) or controlled (as in learning to control fear or anxiety).
The processes by which knowledge, skills, and attitudes are learned are very different – instruc
tional design attempts to create idealized, general methods that can used to facilitate each type of
learning. This chapter limits its discussion to the instructional outcomes of knowledge and skill,
although presumably these ideas may apply to attitudinal learning also.

Is instructional design limited to creating instructional solutions? There has been debate about
the range of the field of instructional design. Some feel that the more general field of perform
ance technology more adequately describes the field that is concerned with improving human
performance, whether it is through instruction or through other methods. While the performance
technology movement is still alive and well in the United States, these terms (instructional
design and performance technology) are frequently confused and often inappropriately used to
describe each other. Performance technology is not concerned with instruction as a sole solution;
the field of performance technology was the nexus for electronic performance support systems
(EPSS) which are intended to facilitate performance. Learning may or may not occur; instruction
is but one possible way to facilitate performance.

Development and Design
Within the discipline of instructional design, there are two major areas that are confused concep
tually: the two processes referred to as instructional development and instructional design. Gen
erally, ″instructional development″ is thought of as the overall process of creating instruction
(analogous to a software engineering lifecycle). This process entails several highlevel steps and
events: needs assessment, specifying performance objectives, designing lessons and materials,
building the systems, project management, testing the materials and systems, and evaluating. In
contrast, ″instructional design″ often refers to design and creation of specific lessons or modules;
essentially, instructional design is a subset of instructional development.

Why is this important? These two processes are at very different levels of scope: one deals with
the overall problem, solution, and project leadership in solving that problem in a costeffective
way (instructional development). Instruction design, on the other hand, deals with an isolated
step in the overall project: creating good, workable, instructional materials. Generally speaking,
learning objects are often described in the context of instructional design; that is, there is an as
sumption that these reusable pieces will be combined to form modules or instructional se
quences. Relating these back to an organizational or educational need is rarely discussed; it is as
sumed (perhaps erroneously) that an individual worker, user, or student will somehow determine
what he or she needs. There is much research to show that students are not particularly good at
selfdiagnosis, and that students often make very poor decisions when given the opportunity to
selfselect instructional materials. If there is a role for learning objects at the development level,
it may deal with diagnostic systems that can accurately determine these needs.

A Basic Instructional Design Method
For now, then, let us simplify the discussion and describe the instructional design process in
somewhat broad strokes. (This discussion does not rigorously follow any particular design mod
el, but explains the general methods of instructional design.) First, a knowledge, skill, or attitude
need is identified. Next the knowledge, skill, or attitude is analyzed (through techniques of task
analysis or content analysis). Additionally, the intended audience is described and often ana
lyzed. At this point, given the preliminary analysis stages, an instructional designer is now ready
to begin creating instructional materials, and hence ready for instructional design.

There are a variety of instructional design models and approaches. The field supports eclectic ap
proaches from basic tutorial designs through discoverybased constructivist approaches. Despite
the range of methods and models, most instructional design models are focused on describing the
intended instructional outcomes, and in turn prescribing an approach to achieve these outcomes.

Several instructional design models are based around content classification taxonomies, most
notably the work of Gagne & Briggs (Gagne, Briggs 1979) and Merrill (Merrill 1983). Typically,
an instructional designer might begin by determining if there is a content classification that might
accurately coincide with the desired skill. If there is a ″standard″ content category that matches
the desired outcome, then the designer can follow a loose template to create instruction. If the de
sired skill fits within a content taxonomy, the belief is that there are clear ″conditions of learning
″ for these types of content. (These conditions of learning are generally referred to as instruction
al methods, techniques, or strategies.) For example, concept classification skills (that require a
student to place a new instance in a category, according to the instances attributes or similarity
with other instances in the category) require definitions, examples, feedback, and practice. At
this level of analysis, most of the instructional design models (despite their differing rhetoric) are
very similar in the actual methods for teaching concepts.

While this is not the only way to proceed, this approach lends itself to the automatic (i.e., com
putercreated) design of instructional materials. If an analyst could determine that a particular
learning outcome falls into a ″known″ category (procedural skill using, for example) and the ana
lyst determined a particular method of instruction (constructivist, for example) then learning ob
ject components could be automatically selected based upon their function. If properly tagged,
these objects could be sequenced with minimal human effort, allowing for the computercreated
design of instruction, following a set of pedagogical rules.

Common instructional design theories often speak of the following elements in the design of in
struction: generalities, examples, explanations, practice items, test items, overviews, advance or
ganizers, and analogies among others. A brief definition of each is given in Figure 1 (Yacci
1999). These could become the basic object structures for learning objects.

Generality: a statement or diagram that applies to all instances, such as a definition of a
concept, or a flowchart of a procedure

Example: a specific instance of a concept, procedure, principle

Explanation: a series of statements that justifies why something works, or why things are done
are particular way

Practice Item: an opportunity for a learner to perform a task with the goal of building skill by
receiving feedback on performance

Test Item: an opportunity for a learner to perform a task with the goal of showing competency
on the task

Course Maps: a verbal or graphic organizer that reveals a learner's place in a given set of con
tent

Advance Organizer: verbal or graphic information presented at a higher level of abstraction
than content that is forthcoming

Analogy: a comparison of two objects that states their similarities and differences

Figure 1: Some proposed knowledge components drawn from instructional design theories

Learning objects and components, therefore are essentially the content chunks that are needed to
teach any given content type. For example, we might wish to use a discovery approach if we
were supporters of constructivism. Alternatively, we may wish to use a totally expository tutorial
approach if we were believers in a more teacherdirected approach. (We don’t wish to argue the
strengths or weaknesses of these approaches at this time.) Tutorial instruction progresses from
generalities (abstractions) to examples (actual instances). Discovery learning often provides ex
amples first, assisting the students in discovering the generality for themselves. Tagging objects
as examples and generalities, then, might be a reasonable starting point for learning objects. Oth
er instructional components that have been shown to assist in student learning are advance organ
izers, statements of relevance, and analogies.

Are there any existing instructional design models that might work well with this type of learn
ing object approach? Gagne’s events of instruction approach and Merrill’s Component Display
Theory, are both wellestablished and researched approaches that use classification taxonomies
and a conditions of learning that are associated with each content classification; most tutorial in
structional design approaches will be variations on the generality followed by numerous ex
amples. These, then, might be the most wellestablished starting points for this backward design
of learning objects. Structurally, constructivist approaches are variations of the example to gen
erality approach. (There are sometimes additional steps or stages that assist the student in deriv
ing the generality.)

Instructional design pedagogical rules could be handled in two obvious places: (1) embedded
within a learning object or (2) as a separate object (e.g., using IMS LD). We might suggest that
initially, the pedagogical rules of instructional design should be handled outside of the learning
objects. If, as we have suggested so far, the objects themselves are tagged and structured chunks
of content, adequate variants could then be selected and sequenced in a different layer, providing
for the most flexibility in use. For example, if our goal was to use a constructivist model, differ
ent objects would be selected and sequenced differently than in a more teachercentered model.

Contributions of Cognitive Psychology and Neurophysiology
Spitzer has recently argued that a variety of deficiencies in the educational system’s effect, at
least in Germany, may be due to badly misunderstanding or completely ignoring what sciences
have brought up about learning (Spitzer 2002). We are not going into detail here, but point into a
few directions to make clear that the sciences of cognitive psychology and neurophysiology also
have an impact on the social engineering discipline of instructional design.

The human brain is known to be, so to call, a pattern inference machine. The fact that under
standing regularities and the triumph of mastering a complex situation results in a very good
feeling (through the release of dopamine in the human brain), is widely used in game design
(Koster 2005). The nature of student motivation is addressed at a different level through Keller’s
ARCS model (Keller 1983). The ARCS model deals with attention, relevance, confidence, and
satisfaction and provides guidance for including these types of motivational issues in the instruc
tional design process. Further, the cognitive processes involved in learning and mastering educa
tional games has been addressed using eyetracking techniques (Yacci 2004; Yacci et al. 2004).

Another phenomenon though rather wellknown seems to be widely misinterpreted: attention.
Attention does not mean–notice the usage of doublenegation in the argument–that learners do
not think of anything else. Let them think of whatever they want, but let them think! Attention is
a ″gate opener″ (Spitzer 2002) for learning, and it is one of the major steps in Gagne’s well
known events of instruction approach (Ragan & Smith 2005).

Brain sciences are difficult enough to leave always a number of questions open. We know
already for decades that there are brain developing processes like myelenisation that change the
degree of brain plasticity (Flechsig 1920) such that critical phases in human learning do really
exist and, when missed, may result in severe disabilities (Rymer 1994). This is particularly
known for language learning (Newport 2002). Generally speaking, stages of child development
are considered in a K12 educational setting. However, corporate training situations (for ex
ample) deal with adult learners, and little research of the changing physiology of adults has been
used in instructional design. The changing nature of the adult brain is a vital and important area.

Computer-created Instructional Design
As already mentioned above, learning is a very individual and complex process which is not yet
fully understood. Therefore, a learner’s context, special needs, interests, goals and preferences
have to be considered in an instructional design process. Elearning systems might offer the user
the option of choosing among several possible instructional options. However, human selfselec
tion of materials is not always an effective process, even though it has much intuitive appeal. An
improvement over selfselection might use the computer as an assistant. Ideally, this might be
done automatically by interpreting information captured about the learner stored in an corres
ponding user model. The ability of a system to automatically adapt to a user is referred to as ad
aptivity, and it is a key feature in evolving standard systems to assistants (Jantke et al. 2004a).

The attempts to build such intelligent systems are partially motivated by the lack of human
teachers and tutors. When there is no one able to provide a certain level of guidance to the
learner, an intelligent system will try to support this task. These approaches, carried out in fields
like Intelligent Tutoring System (ITS) research or AIED (Artificial Intelligence in Education),
are often criticized by groups championing sociocultural approaches to learning. They claim that
these efforts exclude humans from instructional design or from providing instructional feedback.
A middle course, enabling humans to take part in as many processes as possible and nevertheless
offering automatic assistance if wanted or needed by the learner, is required.

A different conception of instruction presents a dramatic point of view, in which learners are the
key actors in the learning play. In this approach, teachers as considered actors as well. IT system
components may form agents that occur as further actors, whereby there is no need at all to have
any anthropomorphic appearance of those agents. Sometimes, they are simply windows on the
computer screen. Instructional design may be seen as a way to set the stage for these actors’ in
terplay. Storyboarding is a conventional approach to anticipate what shall happen on the stage
(Rabenalt 2004) and it has been taken and adapted to technology enhanced learning (Hagebölling
2004). Storyboarding is already used in other social engineering disciplines like enterprise con
flict solution (Forsha 1994).

The Basics of Learning Objects
Before we talk about the relations between instructional design and learning objects, we need to
have a clearer idea of what we’re talking about. This section explains why learning objects are
relevant and discusses terminology and the role of standards.

Motivation
When examining almost any learning material, one will always find numerous relations, links
and cross references. Some content is prerequisite to understanding other material; examples are
useful for different purposes; some keywords are explained in different sections and so on. In tra
ditional printbased learning material, the content is arranged in a reasonable way—sequentially,
of course—to enable the reader to understand it. But if one is interested in additional material
that is not presented, a book’s index, a bookmark—or even other sources—have to be used to
find the respective information. In contrast, elearning provides the opportunity to use a huge
multimedia repository and to adapt to the user’s individual preferences. The learning material no
longer has to be presented in a static way. The sequencing of topics, next steps, presentation style
or difficulty can be chosen by the user or can be automatically selected by the system. To gener
alize: All relations and links existing within the learning material can be used to help the user and
to create or offer individual environments. To realize this opportunity, the content must be struc
tured into relatively small fragments which can then be combined into bigger objects in alternat
ive ways. All fragments and combined objects have to be annotated with adequate metadata to
provide information about relations to other objects, technical prerequisites, presentation style
and so on.

But if learning material is to be divided into socalled ″learning objects,″ the following features
must also be considered:

• Interoperability, i.e., two or more systems or components need to be able to exchange in
formation and to use the information that has been exchanged

• Sharability, i.e., content from several different sources may be accessed by multiple users
(simultaneously) with different elearning systems

• Reusability, i.e., content developed in one context should be reusable in a different con
text

Terminology and Standards
In many publications about learning objects, terminology issues are discussed, because there is a
lack of consensus in the field of elearning (Self 1992), especially concerning learning objects.
Numerous initiatives like AICC (the Aviation Industry CBT Committee), ADL (Advanced Dis

tributed Learning), IEEE LTSC (the Learning Technology Standards Committee of the IEE) and
IMS Global Learning Consortium have made efforts to establish standards. For several years, a
number of initiatives agreed to corporate on the field of standards as shown in the network in
Figure 2.

Figure 2: The cooperation network of the standardization initiatives (adapted from (IMC 2001))

Although much effort has been put toward the definition of standards, and although the LOM
Standard seems to be widely accepted now, ″key issues related to global content classification
such as a common schema, ontology, granularity, taxonomy and semantics of learning objects
which are critical to the design and implementation of learning objects remain unsolved″ (Mo
han, Daniel 2004).

There is also still no consensus on what a learning object is, or, to be more precise: What consti
tutes a learning object, and which metadata have to be annotated? One of the most popular and
often cited definitions is offered by the Learning Objects Metadata working group (LOM) of the
IEEE Learning Technology Standard Committee, where a learning object is defined as ″an arbit
rary entity (digital or nondigital) that can be used, reused or referenced in an electronically
supported learning process.″ This is certainly a very broad definition, and it has been criticized
very often because of its breadth.

What, then, constitutes a good definition?

• According to Wikipedia, a good definition must describe the ″essential properties of a
certain thing″

• The definition must be precise enough to include all concepts wanted and to exclude all
unwanted concepts

Keeping this in mind, let us have a look at some very popular criticisms. Friesen, for example,
argues that the breadth of the LOM definition means that there are few things that cannot be
learning objects (Friesen 2004). But does this really pose a problem? A narrower definition only
makes sense if it does not exclude any objects that may possibly be useful in some elearning
scenario, otherwise it is not usable in too many cases. To illustrate this problem, let us have a
closer look at such a narrower definition. In (Wiley 2000), the author also criticizes the LOM
definition and proposes the following, slightly changed definition: ″any digital resource that can
be reused to support learning″. But this definition entails at least two main problems:

• Wiley replaces the term ″used″ in the LOM definition with the term ″supported″ because
otherwise this would also allow an object like an advertisement banner to be a learning
object. Although his criticisim is valid, using the term ″supported″ does not solve this
problem. It always depends on the current context whether a certain object supports
learning or not! For example, a definition of a decision tree could be considered a learn
ing object in a machine learning course. However, that same decision tree surely doesn’t
support a user trying to learn about a French lyric from the 19th century. To generalize:
(Almost) any object can support learning, it just depends on the context! Or the other way
around: Any object can be meaningless! It is hardly justifiable, if at all, to explicitly ex
clude certain objects in a definition of learning objects.

• The definition, as Wiley says, ″explicitly rejects nondigital (…) and nonreusable (…)
resources″. This is also critical, because there are many scenarios in which it makes sense
at least to reference ″real objects″ like a teacher or a book by using a URI or the like. This
is of special interest if one is interested in defining complete learning processes with ap
proaches like storyboarding (Jantke 2005), where a learning process can also include a
lecture or a seminar.

So what could be a solution to the terminology problem? Obviously, the LOM definition
provides a kind of superclass of all learning objects, because it includes almost all objects or in
structional materials one can think of. Using this as a starting point, any developer or theorist
may define certain types or categories of learning objects according to his special needs and in
terests. What has to be considered is that their meaning must be understandable, by humans
(learners as well as instructors) and at least to some extent by a system. Or, as Friesen says in
(Friesen 2004): ″In order for the positive potential of learning objects to be realized, they need to
be labeled, described, investigated and understood in ways that make the simplicity, compatibil
ity, and advantages claimed for them readily apparent to teachers, trainers and other practitioners.
″ This also implies the notion of the context in which the learning object is developed and used!
Hopefully, the standardization efforts will focus on defining commonly agreed subcategories of
learning objects in the future.

Challenges of Learning Object Oriented Instructional Design
When we have an understanding of how to stimulate the learners’ activities which, in the very
end, are expected to have some learning effects close to what we would like to achieve, we need
to set up a space for the learners’ experiences. In the simplest case, their experience might just be
reading a text, watching a video or viewing some pictures. In other cases we may prepare inter
actions of learners with an elearning system, with other learners and with teachers, tutors and,
perhaps, humans in further roles. Learning objects on the one hand, are forming the space of ex
perience and, on the other hand, are among its inhabitants. Learners may meet them there.

Several aspects are relevant when learning objects shall be used in the given context. Especially
the challenges syntax and semantics, granularity and reusability have to be considered and will
be elaborated in the following.

Syntax and Semantics
Instructional design is a design activity based on a complex corpus of knowledge about the learn
ing task and the audience, driven by clear pedagogical intentions, and based on experience and
belief in the effectiveness of various instructional methods. Learning objects are the essential
building blocks of instructional design, but they are also determining severe limitations of which
pedagogical dreams can be implemented.

When humans get engaged in those ambitious design problems, a key difficulty is the richness of
semantics on the side and the rigidity of the syntactic means available. The granularity of learn
ing objects (see below) is crucial, because a finer granularity allows for the design of a larger
variety of more finetuned learning spaces. Regardless of the granularity, human designers need
to know about the building blocks available; they need to be supported in finding or creating
learning objects they need.

Therefore, it would be great if developers and designers of learning objects were be able to an
notate individual objects in such a way that these annotations described sufficiently well the
meaning a learning object. This is the question for a syntactic representation of a learning ob
ject’s semantics. The dichotomy of syntax and semantics is perhaps the most prominent one in
informatics. Due to generally unsolvable problems of computer science (Rogers 1967), there
does not exist any universal approach to representing the meaning of syntactic objects suffi
ciently well in syntactic annotations.

Before pondering about how to annotate learning objects in a way that describes the essentials of
the learning object’s semantics, one needs to clarify what the meaning of a learning object might
be. Questions like that are known to be difficult. Ludwig Wittgenstein investigating the dicho
tomy of syntax and semantics in natural languages claimed that the meaning of a word is its us
age in a language (Wittgenstein 1953). So, what is the meaning of a learning object?

The meaning of a learning object is its usage in a community and/or in a learning context.

Though instructional design deals with the anticipation of learning experiences (Flechsig 1996,
Reigeluth 1999), one may not expect deterministic forecasting. Therefore, it is a rather difficult
task for designers, developers and implementers to annotate sufficiently precise future usage of
learning objects because of this ambiguity.

To sum up this discussion, one knows that there is not much hope for a priori annotation of learn
ing objects which are expressively describing the semantics of learning objects from the per
spective of the value for and usage in instructional design. The only way out is dynamic annota
tion. Learning objects must be watched as they are used. A systematic monitoring of ongoing e
learning practice will surely tell a lot about the value of particular learning objects by identifying
their role in successful learning paths. Current metadata concepts do not support dynamic an
notation. The future of elearning has to bring, among other things, extensions of metadata con
cepts that go far beyond the current conventional approaches. Satisfying standards are not in
sight.

Reuse in E-Learning
Reusing software is a longnourished dream of computer science. Software reuse has been pro
posed as a solution that would provide for higher quality software with less effort on the part of
developers. For decades, the software industries has strived hard to make this idea work.
However, even with the enormous power of global enterprises there has been little success.
Therefore, we should dampen our optimism about the reuse of learning objects.

Reuse in elearning does not mean that someone uses learning objects that he or she has gener
ated some time ago and it also does not mean that someone has access to a friend’s learning ob
jects. The true challenge of reuse–both in the software business, in general, and in elearning, in
particular–is to find material that the developer did not know about before. This requires support
when searching for learning objects; semantically relevant annotations are seen as a key to suc
cessful learning object retrieval. The core difficulty lies in the dichotomy of syntax and se
mantics.

The elearning community is facing another particular problem related to the issue of learning
object granularity: the Retrieval and Reuse Dilemma.

Figure 3: Simplified view at a case study within the DaMiT System; certain learning objects are
hidden

For illustration, imagine you deal with data mining, in general, and with the CRISP process mod
el of data mining, in particular. Imagine you find in another system (see Figure 3) a case study
with realistic data that fits your needs of illustrating the importance of business understanding
and of data preprocessing. Of course, you don’t want the whole case study from the other sys
tem. Instead, you may wish to use the data set itself or just the illustration which might serve

your purpose. The crux is that the data set is deeply hidden within the other system. It is usually
accessed via a download link, within an exercise, for instance. The picture appears as component
of some page which is itself a composite learning object. The picture file is not carrying any di
dactic metadata.

The Retrieval and Reuse Dilemma describes this phenomenon: what designers, developers and
implementers would usually like to reuse from another system is of such a fine granularity that it
is not appropriately annotated. And what they find, in contrast, is too large and contains too
much irrelevant detail. The learning objects most appropriate for reuse are generally situated in
an elearning context that is not wholely suitable.

One of the reasons for this lack of suitability is coherence of the existing presentation. Designers
and authors have their own writing styles. In principle, fine granularity learning objects like the
picture shown as a component of the page displayed in Figure 3 can hardly be annotated a priori
with ″the right″ pedagogical terms. The picture may be used in different contexts of instructional
design.

One step towards a resolution of the retrieval and reuse dilemma is dynamic annotation (see the
discussion of syntax and semantics). Systems that support the reuse of learning objects need to
monitor the usage of learning objects and learn useful annotations over time–the induction of
meaning. This requires corresponding metadata concepts.

The hierarchical structure of learning objects and, thus, understanding their degrees of granular
ity, is essential. This is enabled by storyboarding concepts as in (Jantke, Knauf 2005), where the
assets that are most probably subject to reuse appear as leaves of a structure which may be seen
in two different ways: as a graph, as long as learning paths in spaces of learning experience are
focused, and as trees, as soon as composition and decomposition of scenes in a storyboard are
crucial.

For the purpose of retrieval, inheritance of metadata–quite similar to inheritance in class hier
archies–should be introduced. Search for appropriate learning assets takes place on a higher level
until desired metadata are found. Vertical propagation leads to potentially useful assets. Finding
useful levels for retrieval and reuse still requires research and experimentation.

Granularity
The granularity of learning objects has a crucial impact on the ability to adapt, aggregate, and ar
range content that suits the needs and preferences of the learner. Insufficient granularity of learn
ing objects (i.e., dealing with large and monolithic blocks of content) prevents a flexible integra
tion in new learning contexts and into a learning environment with exchangeable, transferable
and reusable components. In contrast to that, dividing the content into more or less small learn
ing objects offers a variety of possibilities:

• The learning objects can be aggregated to different types of new learning objects with
varying complexity (e.g., coursegrained), and the learning objects can be arranged with
methods like storyboarding (e.g., the IMS Learning Design Specification treats this
issue).

• Multiple and customizable views of material can be generated. Thus, the same content
can be repurposed and used in highly diverse learning contexts, adapted to the learner's
needs and preferences.

• It is rather simple to assign the learning objects to a certain classification type (e.g., a
definition or a theorem) such that similar types can always be presented in the same way,
and filtering functionalities can be offered (e.g., ″just show me all definitions and theor
ems″).

• The reusability of learning objects can facilitate a consistent notation (this is of special in
terest in the domain of science).

Of course, the granularity of learning objects also has an impact on the simplicity and straightfor
wardness of the authoring process. The more strict and detailed the definitions are, the more
metadata has to be annotated and the harder and the more timeconsuming the design of learning
material gets.

Thus, much thought has to be put into the definition and choice of the granularity of learning ob
jects. The decision of which granularity to choose strongly depends on the context in which the
system using the learning objects shall be used. It has to be distinguished whether most of the
elements will be produced in advance and whether the according repository will only be changed
occasionally (this is typical for publicly funded projects in an academic scenario) or whether we
have more dynamic systems in which content has to be produced faster, in some cases by the
users themselves. To sum up: There is a tradeoff between the possible benefits of reuse and the
expense of cataloging (Wiley 2000).

Multidimensional Learning Objects
This section describes a generic approach for learning objects that can enable adaptivity and sup
port instructional design. This generic approach is based on atomic and multidimensional learn
ing objects called ″units″ and was first used in DaMiT, a research and development project
sponsored by the German Federal Ministry for Education and Research (BMBF). DaMiT abbre
viates ″Data Mining Tutor″ and is an Internetbased intelligent tutoring system for the domain of
knowledge discovery and data mining. The system is available under http://damit.dfki.de under
the link ″Lernsystem″. For more information about the system and implementation details see
(Jantke et al. 2004b) or (Rostanin 2004).

The main idea of this approach is to distinguish between two different dimensions of content
presentation referred to as ″what″adaptation and “how”adaptation (Memmel 2005):

• ″what″-adaptation: Presenting different learning objects or a different sequence of
learning objects.

• ″how″-adaptation: Only presenting different, possibly automatically generated variants
of learning objects.

At the heart of the approach are building blocks called ″units″ which can be assigned to a certain
classification type as an example or an advance organizer. Units are multidimensional (concern
ing ″how″adaptation) learning objects that are composed from one or more socalled ″assets″.
An asset is a media element of a certain technical format, such as a text file, a jpg image or a wav
file.

The units themselves can be combined into other, larger types of learning objects called ″contain
ers″. A container is a combination of one or more units and other containers and can also be
defined in various dimensions (concerning ″what″adaptation).

A derivative of the LOM Metadata Standard is used to describe the learning objects – some parts
were left out, and some important extensions turned out to be necessary.

In the following sections, the different types of learning objects used in the multidimensional
approach will be presented in detail, and examples of their use in the DaMiT system as well as
their potential use for general instructional design are given.

Assets
An asset consists of a single media element of a certain technical format like a text, a jpg image
or an HTMLfile. The metadata describing a sample asset is shown in Figure 4. This asset refers
to an HTMLfile containing the definition of a decision tree. The metadata contain no semantic
information (e.g., about the use of the object in an instructional design scenario) to ensure a high
degree of neutrality and potential reusability. Only information about the version number, the
date of creation, the author and technical information like the file size, format, and technical pre
requisites is annotated.

<?xml version="1.0" encoding="ISO88591"?>
<content>
<general name="dt_definition_informal0"/>
<lifecycle version="1.0"/>
<contribute author="KL_MM" date="200212511:20:6.000000"/>
</lifecycle>
<technical format="HTML" size="8" location="src/dt_definition_informal0.html"/>
</content>

Figure 4: A sample asset

Units
These multidimensional learning objects are the heart of the presented approach. As stated previ
ously, a unit is assembled from one ore more assets. Normally only one asset is used, but in cer
tain cases, more assets may be necessary. For example, if a designer needs to combine an image
asset and an audio file asset, these two assets will combine into a unit.

Units are the smallest building blocks annotated with semantic metadata and they can be defined
in multiple dimensions, if these dimensions only have an impact on the way the unit is presented
(″how″adaptation). Units are ″atomic″ learning objects, meaning that they are ″semantically not
dividable″ and ″uniquely classifiable″, i.e., a learning object may only be defined as a unit if it
satisfies the following conditions:

• It makes no sense to reuse a part of the learning object.

• It can be assigned to a certain classification type as a definition, a proof, or a theorem.

This strict definition of course has an impact on granularity – units are relatively small learning
objects. As already discussed above, this makes the authoring process harder. But the strictness
of the definition and the division into relatively small building blocks facilitates a common un
derstanding of the atomic learning objects – this is essential for the creation of different dimen
sions of the same unit by potentially different authors.

In Figure 5, the metadata used for a unit in DaMiT is shown. The available classification types
can certainly be adapted to the needs of the respective scenario. Grey fields indicate that these
fields correspond to a dimension of a unit. In DaMiT, only the dimensions ″language″ and ″

presentation style″ were used, but there are no restrictions to introduce various other dimensions,
as long as they only have an impact on how the respective unit is presented.

NAME DESCRIPTION
general
name
title
language
description
keyword

id of the element
title to be displayed (optional) for certain types of units
language of the element
informal description of the unit (for other authors)
associated glossary entries

lifecycle
version
status

version number
status (draft, final, revised, unavailable)

contribute
author
date

id of the corresponding author
creation time of the element

technical
requirement*
type
name
minimumversion maxim
umversion

type of requirement
name of what is required
minimal version
maximum version

educational
presentation presentation style (formal, informal)
rights
cost could payment be necessary? (0/1)
relation*
kind
newpage
resource
version

type of relation (requires,isrequiredby,haspart,ispartof)
only relevant for “haspart”: defines pagebreaks
id of the referenced element
version number of the referenced element

classification
type classification type (algorithm, axiom, corollar etc.)

Figure 5: Unit metadata

The metadata describing a sample unit is shown in Figure 6. Physically, a unit is simply an xml
file containing metadata including the references to the corresponding assets (by using the rela
tiontag), in this case the asset already shown in Figure 4.

<?xml version="1.0" encoding="ISO88591"?>
<unit>
<general name="dt_definition" title="Entscheidungsbaum" language="de"
description="Definition eines Entscheidungsbaums" keyword="gl_classification, gl_tree, gl_decision_tree"/>
<lifecycle version="1.0" status="final">
<contribute author="KL_MM" date="200212511:20:6.000000"/>
</lifecycle>
<educational presentation="informal"/>
<rights cost="0"/>
<relation kind="has_part" newpage="false"><resource name="dt_definition_informal0"/></relation>
<classification type="definition"/>
</unit>

Figure 6: A sample unit

Figure 7 gives an impression of how the unit shown in Figure 6 is presented in the DaMiT sys
tem. This screenshot illustrates one of the benefits of assigning each unit to a certain classifica
tion type: a consistent layout is enabled. In this case this is done by automatically creating the
header ″Definition″ (with the title ″Entscheidungsbaum″ added), drawing a border around the
element and displaying an exclamation mark icon. This layout information is stored separately
from the learning objects and can easily be changed.

Figure 7: The unit shown in Figure 6 as it is presented in the DaMiT system

Using classification types also offers many retrieval and filtering functionalities to learners as
well as instructors. One can show or hide certain types of units, for example and a systematic and
fast search for certain types of learning objects in the repository is possible, whether to learn or
to build new objects or courses. Furthermore, modes like ″exam preparation″ automatically hid
ing illustrations or examples and thus delivering only a condensed version of a course can be
offered by the system easily.

A unit can be defined in various dimensions, e.g., concerning ″language″ or ″presentation style″.
This enables an instructor or a system to just pick the variant suiting best the user’s goals, needs,
and preferences. Thus, the same content can be repurposed and used in highly diverse learning
contexts, supporting sharability and reusability. Figure 8 shows two screenshots from the DaMiT
system containing a unit with the definition of a decision tree in an informal (as already shown in
Figure 7) and a formal variant.

Figure 8: Two screenshots of pages with different presentation styles in DaMiT. Each page
consists of four different units: A motivation, a definition, an illustration and an example

Containers
As the name already implies, this type of learning object is aggregated from one ore more units
or containers. As Figure 9 illustrates, the required metadata are similar to a unit, except for two
main differences: First, there is a slot to define various types of containers (in case of the DaMiT
system, the slot ″damitspec″ allows lectures and courses). The definition of these types depends
on the current system and user requirements and the intended use of the containers. Second, con
tainers can also be defined in different dimensions, but these dimensions refer to the ″what″ad
aptations, i.e., they have an impact on which elements are shown in which order. In DaMiT, con
tainers could be defined in different difficulty levels (basic and advanced). For example, the vari
ety in difficulty levels can be realized by including more examples and illustrations and less

complex proofs or the other way around. In contrast to a unit, a container has to clarify what a
different dimension of a container means. This can be done in various ways; for example, one
can demand that both containers have to meet certain conditions regarding their corresponding
learning goals.

<?xml version="1.0" encoding="ISO88591"?>
<topic>
<general name="dt_description" title="Definitionen und Beschreibungen" language="de" description="Eine formale
Problembeschreibung zum Thema Entscheidungsbäume"/>
<lifecycle version="1.0" status="final">
<contribute author="KL_MM" date="200212511:20:6.000000"/>
</lifecycle>
<educational difficulty="basic"/>
<rights cost="0"/>
…
<relation kind="has_part" newpage="true"><resource name="dt_descriptionmotivation1"/></relation>
<relation kind="has_part" newpage="false"><resource name="dt_definition"/></relation>
<relation kind="has_part" newpage="false"><resource name="weather_data_dec_tree"/></relation>
<relation kind="has_part" newpage="false"><resource name="dt_definition_example"/></relation>
…
<damitspec isLecture="false" isCourse="false"/>
</topic>

Figure 9: A sample container

In this approach, the content of a page does not necessarily correspond to a single learning ob
ject. It can be composed from several units, e.g., a passage, a definition, an illustration, and an
example as shown in Figure 8. The pagebreaks can be defined on the level of a container (by us
ing the ″newpage″attribute) or automatically be calculated by the system according to the estim
ated length of the corresponding units (the exact length of a unit sometimes depends on various
client settings and thus cannot always be exactly calculated).

Relations Between Units and Containers
Numerous relations among units and containers are possible. Some content is prerequisite to un
derstanding other material; examples are useful for different purposes; keywords may be ex
plained somewhere else and so on. The relationtag offers the possibility of annotating arbitrary
types of relations that can be exploited by a system in a preferred way. In DaMiT, two types of
relations are allowed:

• ″haspart″ is used to declare subelements (e.g., it contains the ids of the assets a unit is as
sembled from). This information can be used to refer to other learning material in which a
currently displayed unit occurs.

• ″requires″ is used to declare prerequisites on the level of units. Containers automatically
inherit the prerequisites of the units they are composed of. This facilitates automatic
course generation by specifying the exact content that is required to understand various
units selected by the user or the system.

Software Engineering for Instructional Design
Especially in industrial training settings, learning objectives correspond to concrete, welldefined
jobrelated skills, specific tasks to be done, or problems to be solved. Hence, the delivered learn
ing material and learning approach must suit the current situation in which the learner finds him
self. The situation may change over time while the learner is performing his work. Nevertheless,
conventional learning systems leave no space for dynamic selection and sequencing of learning

material (Brusilovsky, Vassileva 2003) and hence, offer little support for adapting the instruction
al design. Therefore, new types of learning services and mechanisms need to be developed that
can account for this change of work situation.

Learning tasks and activities are an important characteristic of good instructional design. Enga
ging learners and actively involving them in the learning process often increases motivation and
learning gain. However, the learning objects are usually not designed for interactivity. To be suc
cessfully reused for learning, these learning objects and materials need to be embedded in inter
active learning activities (Yacci 2005). In addition, the quality of personalization and reuse of
learning could be systemized by means of instructional interaction.

The requirement for more interactivity, more personalization through adaptation of delivered
learning content, and more reuse of existing learning objects will lead to a higher relevance of
sound Software Engineering (SE) principles, methods, and techniques: Learning objects should
be considered as components instead of objects and, in some cases, even as independent deploy
able software components due to their increasing complexity in terms of interactivity with the
learner and the system, different media used, increased set of metadata, and the demand for ad
aptability and higher reusability.

This section explains why Software Engineering (SE) could contribute especially to the under
standing of learning objects as components and how SE approaches could help to develop learn
ing material from learning objects following the component concept. In order to do so, we first
elaborate on the skepticism regarding SE for eLearning by clarifying the misunderstandings
between learning objects and objectoriented programming objects, and we introduce compon
ents as a suitable concept for learning objects. Second, we introduce reusebased software devel
opment by stating validated hypotheses and laws and by presenting the main reuse concepts,
such as components, design patterns, and frameworks. Third, we list some implications on in
struction design from an SE perspective and present a componentbased approach for the instruc
tional design of learning material from learning objects.

Learning Objects and Object-oriented Programming Objects
As explained in the previous sections, the main reason why learning objects have been invented
is reuse and the desire for more flexible, adaptive learning systems. Current development efforts
with learning objects are mainly concerned with metadata and content packaging aspects. Cur
rent object metadata says little about how to combine learning objects with others, and this will
limit the success of the numerous repositories of learning objects that are being developed. In ad
dition, putting together learning objects still happens without any deep knowledge about instruc
tional design concepts. Another general problem is that the reuse process and its underlying prin
ciples are still not fully understood.

Before we elaborate more on reuse, we have to clarify why instructional designers and educators
are skeptical when learning objects are put into relation with objectoriented programming ob
jects and why their skepticism is justified.

Some authors toss around theoretical connections to objectoriented theory that stem from com
puter science. One reason why many of us attempt to connect learning objects to code objects is
that there is a grammatical affinity between ‘object’ as used in ‘learning object’ and objectori
ented programming theory. Another reason is that objectorientation is still understood as the sil
ver bullet to reuse in general, because of the embedded concepts such as inheritance, encapsula
tion, and polymorphism. Robson defines learning resources as objects in an objectoriented mod
el. He compared learning objects with code objects by saying that they both possess methods and

properties; methods include rendering and assessment methods, and properties contain content
and relationships to other resources (Robson 1999). In fact, it is not wrong to refer to these con
cepts from objectoriented theory in order to increase our understanding of learning objects and
our belief in successful reuse. Friesen states that there is not only a conceptual confusion in the
literature between software objects and learning objects, it also seems that objectorientated pro
gramming objects and learning objects do not fit together at all (Friesen 2001).

As stated above, learning object complexity and hence their development will become more
challenging based on several emerging issues such as the aim for more instructional interaction
and repurposing. This will involve other concepts and development methods than those currently
used. Mohan & Brooks (2003) claim that ‘Objectoriented technology could be one technology
to take learning objects out of their current static form and imbue them with behaviors that allow
them to contribute more meaningfully to an instructional situation’. However, the next section
will explain why objectorientation failed concerning reuse and why it should be considered
mainly as enabling technology instead of the ‘silver bullet’ approach for reuse.

Reuse in Software Engineering
Software Engineering is concerned with the design and implementation of large scale, complex
information processing systems that are robust, maintainable, modularly reusable, scalable, and
extensible (Pfleeger 2001). Pfleeger defines objectorientation as an approach to software devel
opment that organizes both the problem and the solution as a connection of discrete ‘objects’.

The success of a software company depends on the ability to react rapidly to changing market
conditions and user requirements. There are various ways of addressing the demand for change,
but one of the most effective methods is software reuse. The roots of software reuse come from
an ITT workshop led by Ted Biggerstaff and Alan Perlis (Biggerstaff, Perlis 1991). Numerous
approaches have been developed and tried over the years. Hence, much experience has been
gathered by using these approaches. Endres and Rombach state that

‘Software reuse reduces cycle time and increases productivity and quality’ (Endres, Rombach
2003).

In the early 1980s, objectorientation was predicted to be the ‘silver bullet’ for reuse. However,
about ten years later, Udell stated that:

‘Object orientation has failed but component software is succeeding’ (Udell 1994).

As Szyperski describes in his book on component software, objects are almost never sold,
bought, or deployed. Instead, software reuse can take on the form of generators, frameworks, and
components. Componentbased development has become the most frequent reuse approach. The
unit of deployment is something more static, such as a class or even a set of classes. ‘Objects that
logically form parts of component ‘instances’ are instantiated as needed, based on the classes that
have been deployed with a component’ (Szyperski 1998). Does this mean that software objects
are not reusable assets? Yes, because objects, from a Software Engineering point of view, are
purely technical – in other words encapsulation, polymorphism, and inheritance. When we re
flect on the statements made above, reusing learning objects that are based on objectoriented
technology is not useful. Are learning objects more like components? Before we come back to
this question in the next section, we would like to refer to some additional Software Engineering
laws that have had a big impact on software development and software reuse in general.

Reuse will be successful only if components show low coupling (i.e., the term for intracompon
ent communication) and high cohesion (i.e., intercomponent interaction), and if the details of the
implementation are properly encapsulated.

‘A structure is stable if cohesion is strong and coupling low’ (Myer 1975).

The application of this law leads to more composite and structured design methods and forms the
basis for objectoriented design. A common characteristic of the principles of cohesion and coup
ling, which are described next, is that systems are broken down into software units – this facilit
ates maintenance, enables reuse of software units, and supports their repurposing (i.e., using a
software unit for a different application/purpose). According to Boyle, weak coupling and high
cohesion are also essential for learning objects (Boyle 2003). He states that from an instructional
point of view, ‘each learning object should be based on one learning objective or learning goal’.
This allows better sequencing compared to learning objects with more than one learning object
ive. In addition, low coupling means that a learning unit should have minimal bindings to other
objects, i.e., the content should not refer to and use material in another object in such a way as to
create necessary dependencies.

Another related law refers to the concept of encapsulation:

‘Only what is hidden can be changed without risk’ (Parnas 72).

The description of what a software unit does is separated from the description of how it does it.
Encapsulating and hiding the details of how a unit works facilitates a ‘divide and conquer’ ap
proach in which a software unit can be developed independently from its clients.

Several interrelated technologies have emerged that support reuse in Software Engineering: com
ponentbased development, architecture styles and design patterns, and product lines (Atkinson
et al. 2002). These technologies emphasize that reuse can only be successful if we understand the
distinction between ‘developing for use’ (developing a component for a specific application) or
‘developing for reuse’ (developing a learning object for numerous applications).

Reuse most often starts with code reuse. This distinction is true for all assets, not just compon
ents. When reuse is done in a systematic and disciplined way, reuse can also be applied to work
products such as requirement specifications, design specifications, test cases, user documenta
tion, screen layout, or project plans. Since learning objects are predicted to get more complex,
these approaches could help to make the development of learning objects for reuse following cer
tain instructional design rules more transparent and systematic. Therefore, several technologies
will be explained in more detail in the following sections before we come back to LOs and in
structional design. They support development for reuse on three different levels of abstraction.
Learning objects should be considered as components instead of objects and in some cases even
as independently deployable software components due to their increasing complexity in terms of
interactivity with the learner and the system, different media used, increased set of metadata, and
the demand for adaptability and higher reusability.

Components and Interfaces
‘A software component is a unit of composition with contractually specified interfaces and expli
cit context dependencies only. A software component can be deployed independently and is sub
ject to composition of third parties.’ (Szyperski, Pfister 1997)

The component paradigm can be seen as an extension of the object paradigm. According to the
definition above, a software component has to be well separated from its environment and other

components. In order to be composable with other components, it needs to be sufficiently self
contained and has to provide a clear specification of what it requires and provides. Hence, a com
ponent will interact with its environment by means of interfaces. A component has no state,
which means that a component cannot be loaded into a particular and activated like an object
system. It exists only once in a system. A component normally consists of several classes and
comes into life by instantiating these. Using components in the development of a new system is
therefore more an assembly process than a programming process.

An interface defines the component’s access points. A component can have multiple interfaces,
each representing a service that the component offers. Keeping in mind that components and
their clients are developed in mutual ignorance, interface specifications are the contracts that
form a common ground for successful interaction between service providers and their clients.
The contract states what the client needs to do to use the interface and describes what the pro
vider has to implement to meet the services promised by the interface. A popular possibility to
define contracts is to specify pre and postconditions for each operation. The client has to fulfill
the precondition before calling the operation, and the provider has to establish the postcondition
before returning to the client.

The above definition also requires components to specify their needs. This means that socalled
context dependencies have to be specified, which define what the deployment environment will
need to provide so that the components can function (i.e., the component world is has been pre
pared for). These dependencies describe the context of composition and deployment.

The main goal is to maximize reuse. However, this has one substantial disadvantage: the explo
sion of context dependencies (Szyperski 1998). Since, components and the environments they
are used in are evolving over time, a large number of context dependencies will decrease the
number of possible clients that satisfy the requirements. Hence, the component designer has to
decide whether a component will be prepared for environmental changes by increasing the de
gree of selfcontainment (i.e., by reducing context dependencies) or increasing the context de
pendencies in order to provide leaner components by means of reuse.

Components are one of the leading reuse technologies in software development. They embody
accumulated knowledge about what good reusable components are and how they should be im
plemented. Nevertheless, additional knowledge about assembling components is needed. Archi
tectures, frameworks, and patterns have become effective technologies for defining and creating
assemblies of such components.

Architecture Styles, Design Patterns, and Frameworks
Architecture styles and design patterns address reuse on the next level of granularity. They sup
port the reuse of strategies for assembling basic building blocks (i.e., components) on a higher
level of abstraction. They abstract from the details of a certain application and capture the main
aspects of a solution concept in the form of a model – mostly language independent. Architec
tures are assumed to be of a larger design scale, and styles can be viewed as more oriented to
wards automated application than patterns. Despite their differences, both generic assembly con
cepts have proven their success in solving recurring software problems.

The idea of pattern was imposed by Alexander. He worked out a pattern language for describing
workable solutions to recurring problems in the design of buildings (Alexander 1979). In the
software development domain, the ‘Gang of Four’ proposed the notion of design patterns as de
scriptions of communicating objects and classes that are customized to solve a general software
design problem. A design pattern is a schematic description of a possible solution and a design

problem. It provides a template showing how elements of the solution (e.g., objects, classes)
should be arranged.

Gamma et al. claim that:

‘Reusing design through pattern yields faster and better maintenance’ (Gamma et al. 1995).

In fact, design patterns for different purposes can be found: analysis patterns, architectural pat
terns, design patterns, and code idioms (Atkinson et al. 2002). Another way of reusing designs is
through frameworks. They provide a skeleton of an application where details have to be filled in.
Hence, they are almost finished systems that can be instantiated. The disadvantage is that they
are limited to a specific domain and type of application. One of the most important roles of a
framework is its regulation of the interactions that the components of the framework can engage
in. Most frameworks apply patterns in their design. Hence, their design can be bottom up and
pattern driven, or top down and target driven. The next section presents one of the most popular
and systematic approaches for supporting the development of frameworks.

Product Lines
This approach supports reuse at the highest level of granularity. A product line relies on the fact
that a family of similar products has several overlapping parts and variable parts within a single
core. A product line approach provides support for the consolidation of common parts (i.e., com
monalities) and support for the selection and tailoring of the variable parts (i.e., variabilities).
Product line engineering profits from the concept of components since components allow a rapid
and efficient assembly into new applications. Variability and commonality in product line engin
eering are captured via genericity. A generic artifact is an artifact that holds all possible variants
of the family, but provides some possibilities to select between them (IEEE Software 2002).

The development cycle can be split up into two parts: one dealing with the development of the
framework (i.e., the core of a product line), that addresses mainly the development of the generic
artifacts capturing the feature sets that are characteristic of all members of a product line (i.e.,
framework engineering); and another related to the development of an application – a concrete
instance of the framework, adapted and extended to the needs of a customer (i.e., application en
gineering).

One goal of product line engineering is to control the variabilities among applications in a family
by planning in advance for future changes and requirements. All variabilities can be described by
means of alternatives. However, as stated by Muthig, modeling the alternatives does not define
which characteristics are associated to which products, nor which dependencies and interrelation
ships exist among variabilities. This is captured in socalled decision models. Decisions are vari
ation points that play a special role during application engineering (Muthig 2002).

Implications on Instructional Design from the Software Engineering
Perspective
After introducing approaches that support systematic reuse in software development, this section
describes the implications on instructional design from the Software Engineering perspective.
We believe that:

• Design patterns are a good means for making design ideas more explicit and hence applic
able

• Learning objects should be considered as (software) components instead of objectoriented
programming objects

• Developing learning objects for reuse by following the component paradigm will increase
their reusability

• Separation of concerns by applying different SE technologies will decrease the complexity
of instructional design and its embodiment (i.e., reusing concrete learning objects).

In the context of this paper, instructional design aims at the production of learning material by
means of learning objects. This task relies mostly on the experience of the instructional designer.
This is also true in the domain of software development: instead of being based on a sufficiently
strong theory and instead of ‘calculating’ software design systematically, Software engineers
rather combine a little theory with a lot of experience. Nevertheless, compared to Software En
gineering, many instructional design theories exist – even if they are difficult to be applied to the
learning object domain. On reason is that no explicit rules are available on how learning objects,
in general, should be selected and sequenced to make instructional sense (Knolmayer 2003).
Goodyear states that the means by which instructional design experience is shared – mainly by
text – needs improvement (Goodyear 2005). The last point makes it extremely difficult, espe
cially for noninstructional designers, to create their learning material, since good instructional
design still requires much professional experience. In order to make instructional design more
applicable, initial design patterns have been developed. Goodyear presents design patterns and
pattern languages for networked learning (Goodyear 2005). His patterns use a similar template as
the one used by Alexander in the architectural domain (Alexander 1979) and also in the software
development domain (Gamma et al. 1995). He motivates design patterns as a good approach for
‘providing a comprehensive set of design ideas in a structured way so that relations between
design patterns are easy to understand, for clearly articulating the design problem and solution,
and for encoding this knowledge in such a way that it supports an iterative, fluid process of
design, extending over hours and days’.

As already stated in a previous section, learning objects are more comparable to the characterist
ics of components and, therefore, we should give more attention to approaches from the compon
entbased development domain than we have done it in the past – if there has been any consider
ation at all. Boyle introduced compound objects to resolve the conflict between cohesive de
coupled learning objects and pedagogically rich content. ‘A compound object consists of two or
more learning objects that are linked to create the compound’. They intend to be more pedago
gically rich and suitable for repurposing by deleting or adding learning objects to the compound
object (Boyle 2003). As detailed later, components could also contain other components. The re
lationships within such a component hierarchy are defined by a containment tree.

As Longmire says, developing learning objects requires two perspectives: on the one side, we
need a global understanding or curricula to conceive a learning object as part of a whole, and on
the other side, a detailed vision is needed to create content as standalone information for it to
function as reusable object (Longmire 2000). This echoes our earlier statement that described the
distinction between instructional development and instructional design. Software engineers have
to deal with the same problem when they develop reusable components as parts of a complete
system – they have to know the future environments where the component will be reused and
they have to design the component in such a way that it can be deployed independently. Despite
many new descriptions of what learning objects should look like, most recent work focuses on
characteristics such as high cohesion, decoupling, etc. – the development methods with respect to

instructional design are still under consideration. It is exactly here where the development of
learning objects can profit from Software Engineering approaches.

The last part of this section will explain how we can improve the development for reuse of learn
ing objects by presenting a componentbased approach that has been adapted and extended from
the componentbased product line engineering method KobrA (Atkinson et al. 2002). The ap
proach uses the previously introduced technologies: components, frameworks, and product lines.
The method is organized in terms of three orthogonal dimensions:

• development that deals with the genericity dimension refers to product line engineering,

• development that deals with the composition dimension refers to learning space engineer
ing, and

• development that deals with the abstraction dimension refers to component embodiment.

The relationships between these dimensions are shown in Figure 10. These three approaches
need not be performed in a certain sequence; they can be performed in various orders or even
used in an interwoven manner.

In the following, we explain how we can use Software Engineering technologies for developing
componentoriented learning material based on explicit models of instructional design. We use
the term learning component to emphasize that a learning object is close to the definition of a
component that was given in the previous section. Figure 10 shows the path from an abstract,
generic, and coarse grained view of a conceptual component model to concrete, specific, and
finegrained learning material composed of learning components that can be used in a specific
learning context. Our explanations focus more on the process steps of the method by explaining
the Software Engineering technologies used and less on the artifacts that are created, adapted, or
used during the process. A detailed description of these artifacts would be out of the scope of this
chapter.

System

Composition

Genericity

Abstraction

Instructional Designer

Component
Embodiment

Framework

Conceptual
Model (Core)

Product Line
Engineering

Learning Context

Conceptual
Model *

Metamodel

Learning Space
Engineering

+ Decision
Model

Learning Component

UML:: Class

«interface» 1* 1

*

-+ parent

0..1

-contain0..**

-creates

*

Realization

Learning Component

UML:: Class

«interface» 1* 1

*

-+ parent

0..1

-contain0..**

-creates

*

Realization

1

23

4

Figure 10: Development dimensions (according to the KobrA method (Atkinson et al. 2002))

First of all, the metamodel describes a learning component from a logical point of view on the
highest level of abstraction (1). The metamodel describes the basic structure of a component and

a decision model. The metamodel can be described, for example, by means of UML class dia
grams (UML stands for Unified Modeling Language and is used for objectoriented modeling).
The conceptual model covers aspects such as the specification of metadata (e.g., by using LOM
or parts of the standard), containment rules that specify the parentchild relationships between
learning components within a containment tree (e.g., for modeling the location of learning com
ponents), specialization rules that define the categories of learning components and their special
ization (e.g., definitions, examples, table of content, overview, and summarycomponents).
Furthermore, this model contains elements that specify the kind of interaction between the sys
tem and the user, and adaptation rules for adapting the learning components to learner types or
context aspects. These rules are very similar to the contracts used as specifications for interfaces.
Beside the conceptual model, a decision model exists that enables the instructional designer to
adapt the model (marked as conceptual model* in Figure 10) to a certain learning context.

Second, the next process step is based on product line engineering (2). The decision model con
tains socalled variation points, their resolution space, and their effects on the conceptual model.
The variation points are resolved by questions. The instructional designer uses these questions in
order to change the conceptual model in a systematic way. The questions refer to the categoriza
tion of learning objects (i.e., the instructional designer adapts the categories or the specialization
structure), instructional design strategies (i.e., the instructional designer adapts the containment
rules, for example, to an experiential learning strategy), or the questions consider adaptation as
pects (i.e., the instructional designer changes the variable parts of the logical learning compon
ent). The answers to the questions include solution packages, so that the instructional designer
gets support on how to adapt the model. One possibility for defining such solution packages is to
use design patterns. They are very useful for describing instructional design strategies in a com
prehensive manner. A design pattern can be understood as a transformation process from one
conceptual model state to a new state. Each transformation step relates to specific parts of the
model and tells the instructional designer how to change those parts. The next two steps are
mainly performed by the system.

Third, the conceptual model, which defines a learning component on a logical level for a certain
learning context, is instantiated to create a learning component framework (3). This step is called
Learning Space Engineering. Such a framework is very close to the implementation level and
can be understood as a network of learning components instances that have no content yet. This
means that the conceptual model is instantiated for each component in the framework. The rela
tions between the learning component instances are derived from the rules of the conceptual
model (e.g., containment rules, adaptation rules, interaction rules, etc.).

The last step is called component embodiment. This step fills the learning components with
physical data (e.g., text, pictures, etc.). Compared to conventional learning objects, learning com
ponents communicate through their interfaces with other components by following the previ
ously specified contracts. Relations that reflect the learning strategy (e.g., experiential learning)
connect the components of different types within the learning space. It depends on the frame
work whether these relations are implemented, for example, by hyperlinks or in some other way.

Conclusion
Flechsig uses an illustrative metaphor when discussing what instructional design–he might prefer
the word didactic design–is about (Flechsig 1996). Imagine you find a tourist map where some
path has been marked. Is this the a posteriori description of a path someone has been walking?
Or is this the a priori indication of a way someone had been planning to walk? You can’t tell

from the path alone. It is just a path. It is neither descriptive nor prescriptive by its very nature. It
has its constituents, its stations, its decision points and the like.

Instructional design deals with the set up of spaces in which (1) a designer has preselected a
learning path, or in which (2) learners can create their own paths and consequently create their
own learning experience, or in which (3) a preselected path can vary based upon adaptive de
cisions. It prepares learning paths such that learners with different prerequisites, with different
needs and desires, in varying moods and under widely unforeseeable circumstances can find their
way. Learning objects and learning components are building blocks for spaces of learning experi
ence, and they are constituents of a variety of learning paths – both dynamic and static. When de
veloping experience spaces, we should strive to move beyond textcentric building blocks and
concentrate on designing interactive dynamic learning content that supports the construction of
knowledge

From the perspective of building spaces of a particular type, instructional design is an engineer
ing discipline, like software engineering and civil engineering (Heinich 1984). It could be
thought of as a discipline of social engineering. All engineering disciplines have their scientific
roots. Building bridges is partially based on calculus; IT security engineering is partially based
on number theory and on cryptography, for instance. Instructional design has both scientific and
practical roots. Its theory is derived from psychology, sociology, and organizational develop
ment, while its practical roots come from education.

The relationship between engineering disciplines and their underlying sciences is known to be
delicate. So it is with instructional design. There are scientific results that tell us on a high level
about the peculiarities of humans–especially of human teachers–in learning (Bransford et al.
2003), (Damasio 1999), (Davis et al. 2000), and others tell us on a very finegrained level what
does attract the learners’ attention and what does not (Downing et al. 2004; Fleming & Levie
1978). Some tell us very explicitly how expertise shows internally (Gauthier et al. 1999), (Gauth
ier et al. 2000), but do not give any hint how to arrive at the states they are reporting about, thus
exemplifying the distinction between a descriptive and a prescriptive field.

It is another peculiarity of didactic design in Europe that there are so many different approaches.
After a divergence from the roots (Comenius 1638), several attempts in the second half of the
20th century to unify the perspectives made it even more cumbersome (Habermas 1985), because
clarity got lost. The field of education, in the United States, has suffered from a similar lack of
clarity; however, instructional design in the US has often been reductionist in its attempt to cre
ate costeffective design templates and design models. This differs sharply from the US approach
to education, which is still largely unstructured and teachercentered.

Therefore, it seems to be reasonable–for the present book chapter, at least–to choose a pragmatic
approach focusing the engineer’s building blocks of spaces and paths: learning objects and com
ponents.

However, approaches developed so far are still limited. There is an urgent need to unite the terms
and approaches of instructional design with a structured, systematic process approach offered,
e.g., by Software Engineering. This will bring us towards an engineering approach that supports
software design and development (Jantke, Knauf 2005). The present contribution takes some pre
liminary steps forward to propose learning objects as (software) components, focused on practic
al instructional design concepts. Thus, instructional design meets Software Engineering.

References
Alexander, C. (1979). The Timeless Way of Building. Oxford University Press.

Atkinson, C. et al. (2002). Componentbased Product Line Engineering with UML. Addison
Wesley.

Biggerstaff, T.J., Perlis A.J. (eds) (1991). Software Reusability. Vol I, Concepts and Models. Ad
disonWesley.

Boyle, T. (2003). Design Principles for Authoring Dynamic, Reusable Learning Objects. Aus
tralian Journal of Educational Technology, 19 (1), 4658.

Bransford, J. D., Brown, A. L., Cocking, R. R. (2003). How People Learn. Brain, Mind, Experi
ence, and School. National Academy Press.

Brusilovsky, P., Vassileva, J. (2003). Course sequencing techniques for largescale webbased
education. Int. J. Continuing Engineering Education and Lifelong Learning, 13, 7594.

Comenius, J.A. (1638). Didactica magna.

Damasio, A. (1999). The Feeling of What Happens. Body and Emotion in the Making of Con
sciousness. Hartcourt Inc.

Davis, B., Sumara, D., LuceKapler, R. (2000). Engaging Minds. Learning and Teaching in a
Complex World. Lawrence Erlbaum Associates.

Dewey, J. (1929) Experience and Nature, New York Dover. Enlarged and revised edition of the
Paul Carus lectures first delivered in 1925. Examines experience and philosophical method;
experience; nature; and experience, nature and art.

Downing, P. E., Bray, D., Rogers, J., Childs, C. (2004). Bodies capture attention when nothing is
expected. Cognition 93 (2004), B27B38.

Endres, A., Rombach, H.D. (2003). A Handbook of Software and Systems Engineering: Empiric
al Observations, Laws, and Theories, Fraunhofer IESE / Pearson AddisonWesley, 327 p.,
ISBN 0 321 154207, 2003.

Flechsig, K.H. (1996). Kleines Handbuch didaktischer Modelle. Neuland.

Flechsig, P. (1920). Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer
Grundlage. Leipzig.

Fleming, M. & Levie, W. H. (1978) Instructional Message Design, Englewood Cliffs, NJ: Edu
cational Technology Publication.

Forsha, H. I. (1994). The Complete Guide to Storyboarding and Problem Solving. ASQ Quality
Press.

Friesen, N. (2001). What are Learning Objects? Interactive Learning Environments. 9, (3).

Friesen, N. (2004). Three Objections to Learning Objects and Elearning Standards. In R. Mc
Greal (Ed.), Online Education Using Learning Objects, London: Routledge, 5970.

Gagne, R.M. & Briggs, L.J. (1979). Principles of Instructional Design: Second Edition. New
York: Holt, Rinehart, and Winston.

Gamma, E., Helm, R., Johnson , R., Vlissides, J. (1995). Design Patterns: Elements of Reusable
Objectoriented Software. Addison Wesley, Reading, MA.

Gauthier, I., Skudlarski, P., Gore, J. C., Anderson, A. W. (2000). Expertise for cars and birds re
cruits brain areas involved in face recognition. nature neuroscience 3 (2000) 2, 191197.

Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., Gore, J. C. (1999). Activation of the
middle fusiform “face area” increases with expertise in recognizing novel objects. nature
neuroscience 2 (1999) 6, 568573.

Goodyear, P. (2005). Educational Design and Networked Learning: Patterns, Pattern Languages
and Design Practice. Australasian Journal of Educational Technology, 21(1), 82101.

Habermas, J. (1985). Die neue Unübersichtlichkeit. edition suhrkamp.

Hagebölling, H. (2004). Interactive Dramaturgies. New Approaches in Multimedia Content and
Design. Springer Verlag.

Heinich, R. (1984). The proper study of instructional technology. Educational Communications
and Technology Journal, 33(1), 915.

IEEE Software (2002). Special Issue on Software Product Lines, July/August 2002, Vol. 19 (4).

IMC GmbH (2001). Corporate Learning and Information Exchange, Technical Whitepaper,
Freiburg, Germany.

Jank, W., Meyer, H. (2002). Didaktische Modelle. Cornelsen.

Jantke, K. P., Degel, G., Grieser, G., Memmel, M., Rostanin, O., Tschiedel, B. (2004a). Techno
logy Enhanced Dimensions in eLearning. In M. E. Auer, U. Auer (eds.), International Con
ference on Interactive Computer Aided Learning, ICL 2004, Sept. 29 Oct.1, 2004, Villach,
Austria (CDROM).

Jantke, K. P., Memmel, M., Rostanin, O., Rudolf, B. (2004b). Media and Service Integration for
Professional ELearning. In ELearn 2004, World Conference on ELearning in Corporate,
Government, Healthcare & Higher Education, November 15, 2004, Washington D.C., USA,
725731.

Jantke, K. P., Igel, C., Sturm, R. (2005). Learner Modeling and Adaptive Behavior Toward a
Paradigmatic Shift from eLearning Tools to Assistants. In R. Kaschek (ed.), First Interna
tional Workshop on Perspectives of Intelligent Systems' Assistance, PISA 2005, Palmerston
North, New Zealand, March 35, 2005. Massey University. Dept. of Information Systems,
6071.

Jantke, K. P., Knauf, R. (2005). Didactic Design through Storyboarding: Standard Concepts for
Standard Tools. In B. R. Baltes et al. (Eds.), First International Workshop on Dissemination
of ELearning Technologies and Applications, DELTA 2005, in: Proceedings of the 4th Inter
national Symposium on Information and Communication Technologies, Cape Town, South
Africa, January 36, 2005, 2025.

Keller, J. M. (1983). Motivational Design of Instruction. In C.M. Reigeluth (Ed.), Instructional
design theories and models: An overview of their current status. Hillsdale, NJ: Lawrence Erl
baum Associates.

Knolmayer, G.F. (2003). Decision support models for composing and navigating through elearn
ing objects. 36th IEEE Annual Hawaii International Conference on System Sciences, Hawaii,
USA.

Koster, R. (2005). A Theory of Fun for Game Design. Paraglyph Press, Inc.

Longmire, W. (2000). Content and Context: Designing and Developing Learning Objects. Learn
ing without Limits, 3, Informania.

Memmel, M. (2005). Adaptivity with Multidimensional Learning Objects. In ELearn 2005,
World Conference on ELearning in Corporate, Government, Healthcare & Higher Educa
tion, October 2428, 2005, Vancouver, Canada.

Merrill, M.D. (1983). Component display theory. In C.M. Reigeluth (Ed.), Instructionaldesign
theories and models: An overview of their current status. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Mohan, P., Brooks, C. (2003). Engineering a Future for Webbased Learning Objects. ICWE
2003, 120123.

Mohan, P., Daniel, B. (2004). The Learning Objects’ Approach: Challenges and Opportunities. In
ELearn 2004, World Conference on ELearning in Corporate, Government, Healthcare &
Higher Education, November 15, 2004, Washington D.C., USA, 25122519.

Muthig, D. (2002). A Lightweight Approach Facilitating an Evolutionary Transition Towards
Software Product Lines. In Series of PhD Theses in Experimental Software Engineering, vol
11, Fraunhofer IRB Verlag

Myer, G. J. (1975). Reliable Software Through Composite Design. New York: Petrocelli.

Newport, E. L. (2002). Critical Periods in Language Development. In L. Nadel (Ed.), Encyclope
dia of Cognitive Science, London: Macmillan Publishers Ltd., 737740.

Parnas, D.L. (1972). On the Critera to Be Used in Decomposing Systems into Modules. Comm.
ACM 15, 12, 10531058.

Pfleeger, S.L. (2001). Software Engineering Theory and Practice. Prentice Hall. 2nd ed.

Posner, M. I., Raichle, M. E. (1998). The neuroimaging of human brain function. Proc. Nat.
Acad. Sci. USA 95 (1998), 763764.

Rabenalt, P. (2004). Filmdramaturgie. VISTAS media production.

Ras, E., Memmel, M., Weibelzahl, S. (2005). Integration of ELearning and Knowledge Manage
ment Barriers, Solutions and Future Issues. In Professional Knowledge Management (Ber
lin, 2005), K.D. Althoff, A. Dengel, R. Bergmann, M. Nick, and T. RothBerghofer, Eds.,
Lecture Notes in Artificial Intelligence LNAI, Vol. 3782, Springer Verlag.

Reigeluth, C. M. (1983). Instructionaldesign theories and models: An overview of their current
status. Hillsdale, New Jersey: Lawrence Erlbaum Associates, Inc.

Reigeluth, C. M., (1999). Instructional Design Theories and Models: A New Paradigm of Instruc
tional Theory, Volume II, Mahwah NJ. Lawrence Erlbaum Associates, Inc.

Robson, R. (1999). Objectoriented Instructional Design and Webbased Authoring. World Con
ference on Educational Multimedia, Hypermedia and Telecommunication, Seattle, Washing
ton, USA, pp. 698702.

Rogers jr., H. (1967). Theory of Recursive Functions and Effective Computability, McGrawHill.

Rostanin, O. (2004). An Alternative Approach to Building WebApplications. Sixth International
Conference on Enterprise Information Systems ICEIS 2004, Porto, Portugal, Proceedings,
Vol. 1, 119124.

Rymer, R. (1994). Genie: A Scientific Tragedy. Harper Collins.

Self, J. (1992). Computational Mathetics: the missing link in Intelligent Tutoring Systems re
search? Directions in Intelligent Tutoring Systems, NATO ASI Series F, Vol. 91, 3656.

Smith, P.L & Ragan, T.J. (2005). Instructional Design, 3rd Ed. Wiley & Son, Inc.

Spitzer, M. (2002). Lernen. Gehirnforschung und die Schule des Lebens. Spektrum Akade
mischer Verlag.

Szyperski, C., Pfister, C. (1997). Workshop on ComponentOriented Programming, Summary. In
Mühlhäuser, M. (ed), Special Issues in ObjectOriented Programming – ECOOP96 Work
shop Reader. dpunkt Verlag, Heidelberg.

Szyperski, C., (1998). Component Software – beyond ObjectOriented Programming. Addison
Wesley, England.

Udell, J., (1994). ComponentWare. BYTE Magazine, 19(5), 4656.

Wiley, D. A. (2000). Connecting learning objects to instructional design theory: A definition, a
metaphor, and a taxonomy. In D. A. Wiley (Ed.), The Instructional Use of Learning Objects:
Online Version. Retrieved April 20, 2005, from the World Wide Web:
http://reusability.org/read/chapters/wiley.

Wittgenstein, L. (1953). Philosophische Untersuchungen. Philosophical Investigations. G.E.M.
Anscombe, R. Rhees (eds.), Oxford.

Yacci, M. (1999). The Knowledge Warehouse: Reusing Knowledge Components. Performance
Improvement Quarterly. Vol 12, Number 3. Pps. 132140.

Yacci, M., Haake, A. & Rozanski, E.P. (2004). EyeTracking Edutainment Interfaces: Operations
and Strategy Learning. Proceedings of AACE World Conference on Educational Multimedia,
Hypermedia, and Telecommunications. Lugano, Switzerland.

Yacci, M. (2004). Game Based Learning: Structures and Outcomes. Proceedings of the Society
for Information Technology and Teacher Education (SITE) 15th International Conference, At
lanta, Georgia.

Yacci, M. (2005). The Promise of Automated Interactivity. In Professional Knowledge Manage
ment (Berlin, 2005), K.D. Althoff, A. Dengel, R. Bergmann, M. Nick, and T. RothBerg
hofer, Eds., Lecture Notes in Artificial Intelligence LNAI, Springer Verlag.

Biography
Martin Memmel studied mathematics and computer science at the University of Kaiserslautern
and received the diploma in 2001. From 2001 to 2003 he was working as a scientific assistant in
the research and development project DaMiT sponsored by the German Federal Ministry for
Education and Research (BMBF) at the University of Kaiserslautern. The practical goal of the
project was to provide an elearning system for the domain of knowledge discovery & data min
ing. In DaMiT, he was responsible for the architecture and the metadata specification of the
learning object repository and the conception and implementation of the authoring tool.

Since 2003, he has been working as a research scientist at German Research Center for Artificial
Intelligence (DFKI) in Kaiserslautern in the Knowledge Management research department,
working on knowledge objects and metadata specification for elearning and Knowledge Man
agement systems. He is involved in the NoE Prolearn (WP1 and WP4) and coorganizer of the

workshop LOKMOL (LearnerOriented Knowledge Management & KMOriented eLearning)
and currently working in the BMBFfunded project BibTutor on the development of an electron
ic tutoring system assisting users in literature research.

Eric Ras earned his diploma in computer science at the Technical University of Kaiserslautern in
2000. From that time, he has worked as a scientist on different public and industrial projects in
the domain of Knowledge Management, agentbased elearning, and Document Engineering at
the Fraunhofer Institute for Experimental Software Engineering. He has gathered experience in
reusebased learning material production, workprocess oriented vocational training methods,
and has worked intensively with current elearning standards and tools. His PhD topic focuses on
pedagogical information agents, which play a key role in personalization of learning and proact
ive information delivery at the workplace, experiential learning for software engineers, and the
application of Software Engineering principles and approaches to elearning.

He has been chair of the Workshop on Learningoriented Knowledge Management and KMori
ented ELearning 2005 (LOKMOL ’05 takes place in conjunction with the Wissensmanagement
2005 Conference). In addition he is a PC member of the Workshop on Human and Social Factors
of Software Engineering’05 (HSSE ’05 takes place in conjunction with the international confer
ence on Software Engineering) and Integrated Working and Learning’05 Track (IWL’05 takes
place in conjunction with the iKnow Conference that focuses especially on the integration of
KM and elearning and put a strong emphasize on knowledge and learning objects).

Klaus P. Jantke studied mathematics at Humboldt University Berlin and earned his diploma in
1975 at Humboldt. He has a Ph.D. in computer science (1979) and a habilitation in computer sci
ence (1984), both at Humboldt. He was winning the Karl Weierstrass award in 1977 and the
Humboldt award in 1981. Klaus P. Jantke has a supplementary education in university level
teaching completed with the Facultas Docendi in 1984. He has another degree in quality manage
ment and a qualification in IT security evaluation.

Over the years, his main research areas are algorithmic learning theory, abstract data types and
formal semantics, planning in dynamic environments and process control, meme media techno
logy, and technology enhanced learning. He put most emphasis on the learnability of computer
systems, even in areas like ADT, planning, meme media, and elearning.

Klaus P. Jantke became a full professor of computer science at Leipzig University of Technology,
Leipzig, Germany, in 1987. After German unification in 1990, he served as the first freely elec
ted head of the department and as the first dean of the Faculty for Informatics, Mathematics and
Natural Sciences. He worked as a research fellow at Stirling University (S.E.R.C. Research Fel
lowship), at ICSI Berkeley, at Fujitsu Research Labs in Numazu and in several other places, and
he worked as a professor at Kuwait University, Kuwait, and at Hokkaido University Sapporo, Ja
pan. For about seven years, he has been a principal researcher at the German Research Center for
Artificial Intelligence (DFKI) and the first head of the DFKI’s Competence Center for eLearn
ing (CCeL). Since 2005 he is the Chief Executive Officer of FIT Leipzig, the Research Institute
for Information Technologies in Leipzig, Germany. He is regularly working as a professor at the
Meme Media Laboratory of Hokkaido University, Sapporo, Japan.

Klaus P. Jantke’s current focus of research is on intelligent systems’ assistance and knowledge
evolution with particular applications to information extraction, meme media technologies and
technology enhanced learning.

Michael Yacci received his B.S. degree in Communications (Ithaca College), M.S. degree in In
strucional Technoloy (Rochester Institute of Technology) and PhD. In Instructional Design, De

velopment, and Evaluation (Syracuse University). He has done consulting design work for cor
porate clients such as Kodak, Xerox, and IBM as well as the US Government’s Center for Excel
lence in Government. He has received research and project funding from the National Science
Foundation. Professor Yacci has taught at Rochester Institute of Technology since 1986, winning
the prestigious Eisenhart Award for excellence in teaching in 2000. He has been instrumental in
developing several new degree programs at RIT including two MS degrees, and a PhD program.
His research interests range from computer based training, instructional design, learning theory,
performance support, knowledge management, and evaluation.

