RDF Spreadsheet Editor: Get (G)rid of Your RDF Data Entry Problems
Markus Schröder, Christian Jilek, Jörn Hees, Sven Hertling, Andreas Dengel

Abstract

Spreadsheets are widely used by knowledge workers, especially in the industrial sector. Their methodology enables a well understood, easy and fast possibility to enter data. As filling out a spreadsheet is more accessible to common knowledge workers than defining RDF statements, in this demo we present a tool which uses the spreadsheet metaphor to enable various kinds of users to easily create RDF data whether they are RDF experts or novices. Our approach aims at supporting users in manually filling a knowledge base with their expertise. This is usually a collaborative process involving a team of domain experts and knowledge engineers. To immediately see modelling consequences and updates by others, each entry is simultaneously transferred into triple statements.

Introduction

- Spreadsheets
 - Well understood
 - Easy and fast possibility to enter data
 - More accessible to common knowledge workers than defining RDF statements

Approach

- Support users in manually filling a knowledge base (primarily A-Box) with their expertise
- By using the spreadsheet metaphor we enable users to work with semantic data in a familiar way

Features

- Class per sheet & entity per row mapping
- Automatically inferring and creating domain and range statements
- Auto completion of resource labels
- Prepending single quotation mark to create a literal
- Copy & paste a resource from one cell to another
- Comment resources using a text area

Administration Interface

- Create knowledge bases
- Query entered spreadsheet data with SPARQL
- Download spreadsheet content as RDF
- Add vocabulary for auto completion (e.g. FOAF)
- Create workbooks and share link to work cooperatively

Workbook Page

<table>
<thead>
<tr>
<th>Person</th>
<th>Color</th>
<th>Age</th>
<th>Employment</th>
<th>Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>Purple</td>
<td>44</td>
<td>Deposition</td>
<td>Married</td>
</tr>
<tr>
<td>James</td>
<td>Green</td>
<td>55</td>
<td>Deposition</td>
<td>Single</td>
</tr>
<tr>
<td>Jimmy</td>
<td>Blue</td>
<td>45</td>
<td>Deposition</td>
<td>Single</td>
</tr>
<tr>
<td>Jimmy</td>
<td>Purple</td>
<td>45</td>
<td>Deposition</td>
<td>Married</td>
</tr>
<tr>
<td>James</td>
<td>Blue</td>
<td>75</td>
<td>Deposition</td>
<td>Single</td>
</tr>
<tr>
<td>Jörn</td>
<td>Green</td>
<td>41</td>
<td>Deposition</td>
<td>Single</td>
</tr>
</tbody>
</table>

Early Evaluation

- 17 participants asked to develop an ontology by modeling the given information

"Max attends the conference ISWC 2017. The ISWC 2017 is located in Vienna. The keywords Semantic Web and Knowledge are related to ISWC 2017. Vienna is a city and lies within the country Austria."

Baselines: writing turtle syntax and using ontology editor Protégé (version 5.2.0)

Measured: time to create the respective triples and number of created triples

Our application leads to the creation of more statements in less time compared to competing approaches

Acknowledgement

Parts of this work have been funded by the German Federal Ministry of Economic Affairs and Energy in the project PRO-OPT (01M2010304D) and by the CIG in the project Managed Forgetting (DE440141).