Bringing Learning to the Workplace

Competence and Performance in Requirements Engineering

aposdle – New ways ...
... to work, learn and collaborate

Tobias Ley, Barbara Kump, Stefanie N. Lindstaedt, Dietrich Albert, Neil A. M. Maiden, Sara V. Jones
Know-Center, University of Graz,
City University London

Overview

- The Context: Work-integrated Learning in APOSDELE
- The Learning Domain: Requirements Engineering
- Our Approach: Competence Performance Approach & Modelling Methodology
- Results of the Modelling
- Three Scenarios for Supporting Work-integrated Learning
- Summary and Future Work
APOSDE in Overview

- Action Line: IST FP6
- Unit: Technology Enhanced Learning (TEL)
- Project Number: IST-027023
- Duration: March 2006 – February 2010 (48 months)
- Budget: 12.930 k€ (7.650 k€ funding European Union)
- Partner: 12 Organizations

APOSDE Partners

Coordinators
- Joanneum Research
- Know-Center

Research Partners
- City University
- University of Twente
- Fraunhofer IPSI
- ITC-IRST

Technology Partners
- SAP
- TU Graz

Application Partners
- EADS CCR
- IHK Darmstadt
- ComNetMedia
- isn – innovation service network
APOSdle: Work-integrated Learning

- **Gaining Insights**
 - How do knowledge workers work and learn?
 - What could work integrated learning support look like?

- **Supporting the knowledge worker**
 - **Work** - Getting the task at hand done fast
 - **Learn** - Improve competences to get new tasks done
 - **Collaborate** - Help others to get their tasks done

The APOSdle sidebar: Resources
Three Models for Work-integrated Learning

- **Domain**
 - Ontology of domain concepts and relations

- **Task**
 - Model of tasks and dependencies

- **Competency**
 - Competence Performance Model
 - Connection of tasks and competencies needed

RESCUE: The Learning Domain

- “Requirements Engineering” as the learning domain for the first prototype
- RESCUE - Requirements Engineering with Scenarios in User-Centered Environments (Maiden & Jones, 2004)
- An APOSDEL learning environment for requirements engineers
The RESCUE process
(Maiden & Jones, 2004)

The What & Why of Competencies

- **What**
 - Competencies are human characteristics (especially knowledge and skills) that allow someone to perform well in a number of specific situations.
 - To be differentiated from (task) performance which is a result of the combination of competencies in a concrete situation.

- **Why**
 - Competencies explain the reasons for good/poor task performance and give a better link to learning.
 - Competencies may be formalized as factual, conceptual and procedural knowledge, and provide a direct link to *learning goals*.
 - Competencies reduce complexity as one competency should be applicable to many tasks, i.e.: $N_{\text{competencies}} < N_{\text{tasks}}$
Our Approach: The Competence Performance Framework

- General Competence Performance Framework in cognitive psychology (Korossy 1997, 1999)
- Application to Competency Management (Ley & Albert, 2003; Ley, 2006)
- Competence Performance Modelling of the RESCUE process as part of the APOSDLE project (March-August 2006)

Competence & Performance in RESCUE: Modelling Method

1. Eliciting Tasks
 - Content analysis of RESCUE documentation (Focus: Human Activity Modelling, System Goal Modelling)
 - Validating the first list of tasks by RESCUE experts

2. Eliciting Competencies
 - Analyzing RESCUE documentation
 - Analyzing existing competency catalogues
 - Eliciting "competencies needed" from RESCUE experts (interview)
 - First harmonization of the list with RESCUE experts and

3. Task Competency Matrix
 - Both RESCUE experts judge which of the tasks needs which competency
Competence & Performance in RESCUE: Modelling Results

- **List of Tasks**
 - HAM (29), SGM (18)

- **List of Competencies**
 - Knowledge (20), Skills (14)

- following is an illustrative example ...

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Task-Competency Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tasks</th>
<th>3</th>
<th>12</th>
<th>13</th>
<th>15</th>
<th>16</th>
<th>20</th>
<th>Minimal Interpretations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(3, 12, 13)</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>(15, 20)</td>
</tr>
<tr>
<td>4.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(3, 13, 20)</td>
</tr>
<tr>
<td>4.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(13, 20)</td>
</tr>
<tr>
<td>4.6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(13, 20)</td>
</tr>
<tr>
<td>5.1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(13)</td>
</tr>
<tr>
<td>5.2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(15)</td>
</tr>
<tr>
<td>5.3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(13, 15, 20)</td>
</tr>
<tr>
<td>5.4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(13, 15, 16)</td>
</tr>
<tr>
<td>5.5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>(13, 15, 16)</td>
</tr>
</tbody>
</table>

Task Competency Assignment provides the basis for:

3. Competence Performance Structure (see slide #16)
4. Prerequisite Relation on the set of competencies (see slide #17)
Competence Performance Structure
(SGM Example)

Prerequisite Relation for SGM Competencies
Three Scenarios for Supporting Work-integrated Learning

1. Updating the User Profile from Performed Tasks
2. Suggesting Resources for Learning from a Competency Gap Analysis
3. Validating the Models

Scenario 1: creating a competency profile from performed tasks

Information on Task Performance
- + 5.1 5.2
- - 4.3 5.3 5.4

Diagnose Competence State
- \{ 13, 15 \}
Scenario 2: retrieving content for a competence gap (1)

If the goal is to perform a task

→ suggest sequence of competencies to learn

- 5.3 → {20}
- 5.4 → {16}
- 4.3 → {20} or {16}, {3}

Scenario 2: retrieving content for a competence gap (2)

- **Invoking a learning template**
 - Competency {20} Ability to produce i*model
 - Connected to knowledge type procedural learning
 - Invokes a learning template for “Learning by Example”

- **Retrieving Content from existing documents**
 - Learning Template looks for Material Use “Example” and “Procedure”
 - Domain Concepts: i*model
Scenario 3: Validating Models with the “Leave One Out” Method

- Task performance information (successful vs. not successful) is available for a subset $t_1 \ldots t_n$ of the tasks
- Apply “leave one out” cross validation procedure
 1. take out one task (t_i) [$i=1 \ldots n$] for which performance information is available
 2. construct a competence performance structure from other n-1 tasks
 3. From this structure, predict whether t_i is performed successfully
 4. Compare prediction to actual performance in t_i
 5. Increase $i=i+1$ and go to step 1
- Relate correct to incorrect predictions (e.g. by using τ_b)

Results for “leave one out” cross validation procedure

<table>
<thead>
<tr>
<th>τ_b</th>
<th>Competence-Performance Structure (Prediction) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notional Solution Patterns (Assessment) b</td>
<td>Expert 1</td>
</tr>
<tr>
<td>Activity Modelling c</td>
<td></td>
</tr>
<tr>
<td>Expert 1</td>
<td>0.33^{**}</td>
</tr>
<tr>
<td>Expert 2</td>
<td>0.45^{**}</td>
</tr>
<tr>
<td>System Goal Modelling</td>
<td></td>
</tr>
<tr>
<td>Expert 1 e</td>
<td>0.54^{**}</td>
</tr>
<tr>
<td>Expert 2</td>
<td>0.32^{**}</td>
</tr>
</tbody>
</table>
Summary: Why we suggest the Competence Performance Approach

- Provides close connection of learning to task performance in the workplace
- Derives dependencies on competencies without need to model them explicitly
- Expertise is not modelled linearly, but there are a number of ways to learn
- Formal model allows for validation in the process of modelling, or in the process of operation

Thank You!

Tobias Ley
Know-Center
Inffeldgasse 21a
8010 Graz
Austria
Phone: +43 316 8739273
E-mail: tley@know-center.at

http://www.aposdle.org