
An Easy & Collaborative RDF Data Entry
Method using the Spreadsheet Metaphor

Markus Schröder1,2, Christian Jilek1,2, Jörn Hees1,2,
Sven Hertling3, and Andreas Dengel1,2

1 German Research Center for Artificial Intelligence (DFKI) GmbH
Trippstadter Straße 122, 67663 Kaiserslautern, Germany,

{markus.schroeder, christian.jilek, joern.hees, andreas.dengel}@dfki.de,
2 Knowledge-Based Systems Group, Department of Computer Science,

TU Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
3 Data and Web Science Group, University of Mannheim, Germany,

sven@informatik.uni-mannheim.de,

Abstract. Spreadsheets are widely used by knowledge workers, especially
in the industrial sector. Their methodology enables a well understood,
easy and fast possibility to enter data. As filling out a spreadsheet
is more accessible to common knowledge workers than defining RDF
statements, in this paper, we propose an easy-to-use, zero-configuration,
web-based spreadsheet editor that simultaneously transfers spreadsheet
entries into RDF statements. It enables various kinds of users to easily
create semantic data whether they are RDF experts or novices. The
typical scenario we address focuses on creating instance data starting
with an empty knowledge base that is filled incrementally. In a user study,
participants were able to create more statements in shorter time, having
similar or even significantly outperforming quality, compared to other
approaches.

Keywords: spreadsheet, RDF data entry, filling knowledge base

1 Motivation

One of the first tasks in our industry projects is to gather knowledge about the
customer’s domain, preferably in a semantic representation like RDF. In order to
extract domain knowledge, data dumps provided by the customer are usually
analysed, which is often not enough: interrelations between different parts of the
data are often missing, data may be incomplete or misleading, information is
not available in written form, but only in people’s minds, etc. For us, especially
such tacit knowledge is often valuable, requiring us to also focus intensively
on the domain experts. Instead of rather passively involving our partners, e.g.
by doing interviews (often costly), we prefer to enable them to actively and
directly communicate their expertise using given software. Available tools (e.g.,
the frequently used Protégé4) require a certain training period, as well as consid-
erable RDF knowledge, in order to be used (and configured). In contrast, the

4 http://protege.stanford.edu

http://protege.stanford.edu


spreadsheet metaphor is widely known and well suited for enabling all kinds of
users to manually enter data. Thus, our goal is to find a balance between the two.
We therefore propose an easy-to-use, zero-configuration5 spreadsheet editor that
simultaneously transfers spreadsheet entries into RDF statements. The typical
scenario we address focuses on creating instance data (ABox) starting with an
empty knowledge base that is filled incrementally. Collecting all relevant informa-
tion is usually an iterative process, requiring the collaboration of several experts,
as well as the occasional assistance of knowledge engineers. The task of the latter
is to possibly provide initial guidance, intermediate feedback about modelling
consequences, or doing data cleanup. Since such a modelling process involves a
lot of communication (expert-to-expert, expert-to-knowledge engineer, knowledge
engineer-to-knowledge engineer), all contributors should immediately see updates
by others. We therefore designed our spreadsheet editor to be web-based, i.e.
hosted on the intranet – or the internet if confidentiality requirements permit
this. The application, which was briefly demonstrated6 in [10], is evaluated in a
user study which showed that participants were able to easily create meaningful
triples although being rather inexperienced in RDF.

This paper is structured as follows: Our application is presented in Section 2,
followed by the results of the aforementioned user study (Section 3). In Section
4, a detailed overview of related work in this area is presented. Last, we conclude
this paper by giving a short summary and outlook on possible future work in
Section 5.

2 Approach

Our approach is a web-based spreadsheet editor, that simultaneously transfers
spreadsheet inputs to RDF statements and also adds them to a knowledge base.
By this we enable users to enter (and modify) semantic data in a familiar way.
Although there exist several importing tools, we decided against them to better
suite the interactive and communication-intensive nature of our targeted sce-
narios. We use a simple and fixed class per sheet and entity per row mapping
similar to csv2rdf7. This is a trade-off decision favouring convenient manual
data entry over highly configurable data import, since we primarily focus on
gathering the knowledge in people’s minds. The main features are creating and
manipulating RDF classes, properties, instances and assertions. As stated in the
last section, our goal was not to provide a full-featured ontology editor, but to
focus on easily creating instance data (ABox). Especially, our tool supports the
user by automatically inferring and creating domain and range statements or auto
completion of resource labels, for example. Common vocabularies (like FOAF)
can simply be added in order to reuse their classes and properties (i.e., referencing
them in spreadsheets). Knowledge bases can be imported and exported using

5 using a fixed mapping, see Section 2
6 http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/
7 https://www.w3.org/TR/csv2rdf/

http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/
https://www.w3.org/TR/csv2rdf/


typical triple data formats. For a first impression we kindly refer the reader to
our application’s demo8 [10].

Using an example, we will present the basic functionality (Section 2.1), as
well as extensions that further ease the usage of our tool (Section 2.2).

2.1 Basic Functionality

To show the basic functionality of our app, we use the example of collecting
information about conferences in a spreadsheet. Its graphical user interface is
depicted in Figure 1 (we annotated the main features in red). Like it is common

Fig. 1: GUI of our RDF spreadsheet editor with already entered conferences and
additional information. Feature remarks: 1 2 create a new sheet, 3 instances,
4 properties, 5 object statement, 6 literal statement, 7 auto complete feature

and 8 resource’s comment when mouse hovering.

for spreadsheet editors, users may create several sheets. Naming a sheet 1
creates a new class 2 . The row header 3 is used to create resources which are
instances of this class. Entering a label in a column header 4 generates a new
property having the class as its domain. Cell 5 instantiates a resource labelled
ESWC and links it to the resource ISWC (row header) using the related to
property (column header) resulting in the following triple statement: (ISWC,
related to, ESWC). Forcing the application to create a literal 6 instead of a
resource is done by prepending a single quotation mark as common in spreadsheet
tools indicating text9. There is an auto completion feature 7 which operates on

8 http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/
9 Note that the prepending a single quotation mark is not shown in Figure 1 because

the cell is not currently being edited.

http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/


the resources’ text literals. Using a text area (not visible in the screen shot) a
comment for each resource can be stated, which is then presented when mouse
hovering it 8 .

In the following, we will have a closer look at the generated RDF triple
statements. For each new resource a URI is generated having a random UUID
as postfix. The entered text in the cell is used as the resource’s label and also
serves as an “identifier” as explained in more detail in the next section. Since
English is the selected language in our example, the label’s language tag is set
accordingly. We apply a class per sheet mapping, thus entering a name in the
row header 3 , e.g. ISWC, creates a resource which is an instance of Conference.
Column header entries 4 like related to lead to the creation of properties having
this sheet’s class Conference as its rdfs:domain. Entering ESWC into the cell
that intersects the ISWC row and the related to column 5 triggers two actions:
First, the ESWC resource is created, then a statement ISWC related to ESWC
is generated. Here we apply an entity per row mapping. Note that this is not
dependent on the order in which the cells are populated. A user may first fill the
(intersecting) cell, then the row and column headers in order to create the same
statement. To distinguish between resources and literals, one has to prepend
a single quote in order to make the cell content a literal. In this example the
user would like to save the rank10 of ISWC as a language string. Thus, ’A is
entered in 6 (the single quote is not visible in the screen shot, since the cell
is currently not in edit mode). Since the rank column currently only contains
rdf:langString values (i.e., "A"@en), its rdfs:range is inferred accordingly.
The resulting RDF statements are shown in Listing 1.1.

Listing 1.1: The resulting triples for our example (all URIs are shortened for the
sake of readability and have an exemplary ex namespace)

ex :1 cfd a rdfs: Class ;
rdfs: label " Conference "@en . # (2)

ex :99 f2 a ex ::1 cfd , owl: Thing ;
rdfs: label "ISWC"@en ; # (3)
ex:ccf1 ex :76 b9 ; # (5)
ex :6942 "A"@en . # (6)

ex:ccf1 a rdf: Property ;
rdfs: domain ex :1 cfd ;
rdfs: label " related to"@en . # (4)

ex :76 b9 a owl: Thing ;
rdfs: label "ESWC"@en .

ex :6942 a rdf: Property ;
rdfs: label "rank"@en ;
rdfs: domain ex :1 cfd ;
rdfs: range rdf: langString .

10 The rank value is taken from http://portal.core.edu.au/conf-ranks/1338/

http://portal.core.edu.au/conf-ranks/1338/


2.2 Extensions

Using the previously presented basic functionality it is already possible to make
simple RDF statements. However, to simplify the usage of our tool we implemented
several extensions.

Making it possible to address resources by their label, we have to disambiguate
them. Thus, entering ISWC, for example, does not create a new resource, but
reuses the existing one. This feature may be disabled if desired. Note that in our
targeted, rather small closed-world scenarios ambiguities are very rare and can
easily be resolved (e.g., assigning a slightly different label). To explicitly refer
to an existing resource, users then have two possibilities: using the previously
introduced (1) auto completion feature, which shows a list of suggestions while
typing. If one of them is selected, the resource’s URI instead of its label is
used. Additionally, it is possible to (2) copy & paste a resource from one cell to
another. Again, the system uses the resource’s URI instead of its label. Reusing
the resources throughout one or on different sheets enables users to link instances
(ABox) and create a more interconnected RDF graph. Additionally, other users
can benefit from classes and properties (TBox) that have already been modelled
by their colleagues. Let us consider a short example. While it is enough to say
that a Conference CHI is located in a place Denver in one sheet, details about
this location may be given in another. This can easily be done by just adding
Denver to this new sheet’s row header and providing more properties using its
columns.

Apart from a label, each resource can be equipped with a comment, which
is particularly helpful if two resources share the same name: For example, HCI
could be the name of a research area or a conference. If a resource is in focus, it
may be commented on using a text area at the bottom of the screen. This then
triggers the creation of a rdfs:comment statement in the RDF graph, which is
presented to the user whenever the resource is mouse hovered 8 .

To derive a literal’s datatype the following three checks are performed: (1)
If an input can be converted to an integer, the datatype of xsd:int is used.
(2) If the input is a floating-point number, the xsd:float type is assumed. (3)
Entering true or false triggers a xsd:boolean. If all three cases do not apply the
text is associated with a given language and stored as a rdf:langString.

As mentioned before, each resource is by default identified with a URI
containing randomly generated UUID. However, if an entered identifier can be
assumed to be unique creating an additional URI is skipped. For example, if
a hyperlink like https://iswc2017.semanticweb.org/ is entered, it is directly
used as this resource’s URI (without generating an additional one).

Correcting existing labels or literals is also possible by modifying their cell
content. This updates the corresponding rdfs:label or literal statement, respec-
tively. Setting the label’s string to being empty ("") removes the link completely.
Note that this does not delete the resource itself (i.e., its corresponding triples)
in order to be able to later use it in another spreadsheet, for example.

Further ideas for interesting future extensions will be addressed in Section 5
after our evaluation and related work in the next sections.



3 Evaluation

We conducted a user study to show that our application is 1) easy to use and
enables users to 2) create meaningful triple statements (even if they are rather
inexperienced in RDF).

Evaluation Setup To estimate the ease of use of our application we measured
the time to model a given scenario in RDF. We learned from our industry projects
that customers familiar with RDF often (ab)use Protégé11 for creating triple
statements. Additionally, we also observed cases in which RDF is directly entered
using a formal syntax like Turtle [15]. Thus, we compare our approach with these
two in the following.

We had 17 participants, 13 of them male, 4 female with an average age of 31.53
(standard deviation: 9.64). To assess their knowledge about RDF, the usage of
Protégé and spreadsheet tools, they were asked to estimate their skills on a 5-point
scale ranging from novice (1) to expert (5). The results are summarized in the
three histograms of Figure 2. Apart from some novices and experts, most of the

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

(a) knowledge about RDF

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

(b) ability of using Protégé

1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

(c) ability of using spread-
sheet tools

Fig. 2: The participants’ estimation of their knowledge and abilities on a 5-point
scale ranging from novice (1) to expert (5).

participants have mediocre RDF skills (i.e. RDF skills are approximately normal
distributed). In contrast, we had a large group of Protégé novices, no experts and
just one that considered himself a near-expert. In the case of spreadsheet tools,
the distribution is quite opposite, 12 of 17 persons consider themselves experts
or near-experts.

Looking at the three histograms, we see that lots of users are familiar with
RDF without being an expert in Protégé, but they are quite experienced in using
spreadsheet tools.

Each participant received the following task: They are asked to develop an
ontology by modelling the given information below as concisely as possible:

11 http://protege.stanford.edu

http://protege.stanford.edu


“Max attends the conference ESWC 2017. The ESWC 2017 is located in
Portoroz. The keywords Semantic Web and Knowledge are related to
ESWC 2017. Portoroz is a city and lies within the country Slovenia.”

By giving the same scenario to all participants we intended to ensure that
they model the same aspects. Nevertheless, the results still vary between each of
them due to existing freedom in modelling. The very same information should
be modelled in RDF by each participant using three different tools:

1. a common text editor of their choice using the Turtle syntax (TS),
2. using the ontology editor Protégé (P) in version 5.2.0,
3. using our RDF spreadsheet editor (RSE).

To reduce learning effects over all participants we shuffled the order in which
they used the applications, i.e. all permutations of (TS, P, RSE) occurred re-
peatedly. Participants could use a text editor of their choice, which typically was
Notepad++, Atom or Sublime Text. They were encouraged to use usual shortcuts
like copy & paste, auto completion, etc. Since writing Turtle was not part of
their daily activities, they were given a small example from a different context
that showed the syntax. Additionally, they had a short tutorial on Protégé in
the beginning and could even ask questions about its usage during the task. The
basic functionality of our application was briefly explained using a screen shot.

Ease of Use To estimate the ease of use, we measured for each application
and each participant the time to create the respective triples of our scenario.
We started the time tracking with the user’s first input and stopped it with
their statement of being done with the task. Besides the processing time we also
counted the number of created RDF statements (stmts). If the submitted Turtle
syntax could not be parsed, we counted the triples manually. Due to syntax
errors this was the case for 13 of 17 participants. The results are depicted in
Table 1. To compare the results for the three different tasks we calculated the
average number of created statements per minute (given at the bottom of Table
1). In this comparison our approach achieves a score of 13.817 statements per
minute on average, which is four times the value of Protégé (3.381). Although
Protégé offers convenient possibilities to enter data, e.g. buttons and lists, several
participants stated to be overwhelmed by the richness of the GUI. Features to do
bulk editing either seem to be non-existent or were not known to the participants
– a fact that may also be explained by the high number of Protégé novices in
our study. Writing Turtle in a text editor achieved similar results (3.102) as
using Protégé. In these editors the lack of a specialized graphical user interface
is compensated by features like copy & paste, text replacements, multi cursor,
regular expressions, auto completion, etc.

To give a visual impression of the results we transferred the data of Table 1
to a scatterplot in Figure 3. The x-axis shows the time in seconds to complete a
task, whereas the y-axis depicts the number of created triples in that time. Each
tool is represented with a different symbol: a text editor using turtle syntax (�),
Protégé (�) and our approach (4). Let us look at the results in more detail in the



Participant
TS P RSE

time stmts time stmts time stmts

01 719 40 534 27 370 60
02 527 42 1153 49 183 49
03 532 17 1458 36 693 53
04 327 20 602 30 178 64
05 589 28 641 35 193 49
06 377 42 486 33 187 49
07 1241 39 1066 35 198 52
08 567 14 419 22 228 41
09 568 22 1014 30 272 53
10 525 27 902 30 224 49
11 807 27 566 35 375 49
12 383 39 221 26 133 46
13 1423 40 625 46 368 56
14 734 21 605 32 321 69
15 858 38 531 30 202 46
16 384 19 378 29 124 46
17 589 35 335 27 209 49

statements I3.102 I3.381 I13.817
per minute �1.517 �1.369 �4.800

Table 1: Results of the user study: the time in seconds to finish the evaluation
task (time), the number of created RDF statements (stmts) in the respective
time interval and the average number (and standard deviation) of statements
per minute for each of the three tools: writing turtle syntax (TS), using Protégé
(P) and our RDF spreadsheet editor (RSE).

following, beginning with writing Turtle using a common text editor. Although
a few experienced users were able to create about 40 statements in a bit less
than 400 seconds, most of the users were only able to create less than 40 in
400 to 800 seconds. Two participants needed even longer (about 1200 and 1400
seconds). Using Protégé resulted in similar results. About 30 statements could
be formulated in less than 600 seconds. Again, some users needed more time
(900 to 1400 seconds) for about the same number of statements. The best result
achieved was 46 statements in about 600 seconds. In contrast, all users except
for one were able to complete the tasks using our spreadsheet editor in less than
375 seconds (there was one participant that needed 693 seconds). The resulting
number of created statements was greater than 40 in all cases, whereas the best
performing user was even able to create 69 statements in 321 seconds.

There is no clear performance difference between Protégé and Turtle, whereas
using our application clearly led to the creation of more statements in less time.
We therefore consider our goal of creating an easy-to-use application to be fulfilled.

To measure the user experience of our application we utilized the User Ex-
perience Questionaire (UEQ) proposed in [7]. Based on this questionnaire the
following six factors are derived: attractiveness, perspicuity, efficiency, depend-



200 400 600 800 1000 1200 1400

time in seconds

20

30

40

50

60

70

n
u

m
b

er
of

tr
ip

le
st

at
em

en
ts

Turtle Syntax

Protégé

RDF Spreadsheet

Fig. 3: Results of the user study: the time in seconds to finish the evaluation task
(x-axis), the number of created RDF statements (y-axis) in the respective time
interval for each of the three tools: writing turtle syntax (�), Protégé (�) and
our approach (4).

ability, stimulation, and novelty. Participants were asked to fill out the UEQ right
after completing the task performed with our tool. The results are depicted in
Figure 4. Our application receives excellent scores in attractiveness, efficiency and
especially perspicuity. The latter can be explained due to using the spreadsheet
metaphor causing participants to operate on familiar terrain. This familiarity
aspect is also mirrored in the novelty scores, which are below average. Thus, users
did not perceive our application as being novel, which is exactly as intended.

Beside the ease of use, we also evaluated the creation of meaningful statements,
which is addressed in the next section.

Meaningful Triple Statements Having an application that allows for easy
RDF data creation would not be very useful if the resulting model is incorrect or
of bad quality.

Concerning correctness, the results for each participant and each application
were verified by the experimenter. In all cases the given scenario has been modelled
correctly beside some minor variations (due to personal design decisions).

To show that the ontologies resulting from using our tool are of similar quality
than those created with Protégé, we calculated several quality metrics [12]. In
particular, we use the number of statements, classes, properties and instances as



Fig. 4: User experience questionnaire results

well as the relationship richness, attribute richness, class richness and average
population. Table 2 shows the resulting metrics. Note that we omitted the Turtle
results here, since most of them were not parsable. For each metric we calculated
the dependent t-test for paired samples with a significance level of 5%. Ontologies
created with our application are significantly better with respect to the number of
statements, instances, attribute richness, and average population. For relationship
richness Protégé slightly outperforms us, as the RDF spreadsheet editor creates
more RDFS properties (like rdfs:label, rdfs:domain etc.) than Protégé (while
the number of user-defined properties is about the same). On the other hand, this
causes the attribute richness to be notably higher, since each resource (especially
classes) is associated with a label in our system. The average population is roughly
the same for both tools due to the approximately same number of modelled
classes and instances in both cases.

In summary, we conclude that the results of our approach are at least compa-
rable to those achieved by using Protégé, and significantly outperform it with
respect to the number of statements, instances, attribute richness, and average
population.

4 Related Work

While our approach combines the common spreadsheet metaphor with interactive
and collaborative aspects, other related approaches exist. For most of them a
knowledge expert has to provide a mapping of how to transfer the spreadsheet
data to RDF, whereas some approaches also support semi- or fully automated
conversions without this necessity (see Section 4.1). Apart from taking filled
spreadsheets as an input and converting them, other approaches focus on sup-
porting the user in entering and working with RDF data (Section 4.2). Since our
application allows for entering data that is then transferred to RDF, we investi-
gate the area of related work from two directions: existing RDF/ontology editors
that may use the spreadsheet metaphor (Section 4.3) as well as spreadsheet
editors that may operate on RDF graphs (Section 4.4).



part. stmt classes prop. inst. relationship attribute class average
richness richness richness population

P RSE P RSE P RSE P RSE P RSE P RSE P RSE P RSE

01 27 60 5 5 4 5 6 6 0.185 0.150 0.000 1.000 1.000 1.000 1.200 1.200
02 49 49 5 5 4 4 6 6 0.102 0.102 0.800 1.000 1.000 1.000 1.200 1.200
03 36 53 6 6 4 4 4 6 0.167 0.094 0.000 1.000 0.667 0.667 0.667 1.000
04 30 64 3 3 5 8 4 7 0.200 0.125 0.000 1.000 1.000 1.000 1.333 2.333
05 35 49 5 5 4 4 6 6 0.143 0.102 0.000 1.000 1.000 1.000 1.200 1.200
06 33 49 5 5 4 4 6 6 0.152 0.102 0.000 1.000 1.000 1.000 1.200 1.200
07 35 52 5 5 4 5 6 6 0.143 0.115 0.000 1.000 1.000 0.800 1.200 1.200
08 22 41 4 4 3 3 4 6 0.227 0.122 0.000 1.000 1.000 1.000 1.000 1.500
09 30 53 5 5 5 4 6 7 0.200 0.113 0.000 1.000 1.000 1.000 1.200 1.400
10 30 49 6 5 5 4 6 6 0.133 0.102 0.000 1.000 0.833 1.000 1.000 1.200
11 35 49 5 5 4 4 6 6 0.143 0.102 0.000 1.000 1.000 1.000 1.200 1.200
12 26 46 5 5 3 3 6 6 0.192 0.109 0.000 1.000 1.000 1.000 1.200 1.200
13 46 56 6 6 5 4 7 8 0.152 0.089 0.000 1.000 1.000 1.000 1.167 1.333
14 32 69 4 4 7 8 4 6 0.219 0.145 0.000 1.500 1.000 1.000 1.000 1.500
15 30 46 5 4 5 5 4 4 0.167 0.130 0.000 1.000 0.800 1.000 0.800 1.000
16 29 46 6 5 3 3 6 6 0.172 0.109 0.000 1.000 0.833 1.000 1.000 1.200
17 27 49 5 5 4 4 6 6 0.185 0.102 0.000 1.000 1.000 1.000 1.200 1.200

avg. 32.5 51.8 5.0 4.8 4.3 4.5 5.5 6.1 0.170 0.113 0.047 1.029 0.949 0.969 1.104 1.298
s.d. 6.8 7.1 0.8 0.7 1.0 1.5 1.0 0.8 0.033 0.017 0.194 0.121 0.101 0.092 0.171 0.300

Table 2: Ontology metrics [12] to compare the results of our approach (RSE)
with ontologies generated by Protégé (P) for each participant (part.); used
abbreviations: stmt: number of created RDF statements, prop.: properties, inst.:
instances., avg.: average, s.d.: standard deviation

4.1 Mapping & Conversion

RDF123 [4] uses an expressive mapping that has to be formulated in RDF. It
transfers rows into row graphs, which are then merged to get a full representation
of the spreadsheet in RDF. More complex mappings can be expressed using
conditions, arithmetic and string manipulation. The formulation of mappings
induces additional effort and requires deeper knowledge about concepts of RDF.
Although the authors provide a graphical tool to support this process, basic RDF
knowledge is needed nonetheless.

Sheet2RDF [3] follows a similar approach but focuses more on using heuristics
to derive transformation rules automatically, which can then be refined by the
user.

Spread2RDF12 also converts spreadsheets to RDF using a mapping language
which is defined in Ruby.

R2RML (RDB to RDF Mapping Language) [14] and its extension RML
(RDF Mapping Language) [2] are very general mapping languages that transfer
relational databases as well as structured data to RDF.

D2RQ [1] also provides a mapping language but focuses on making relational
databases queryable by SPARQL.

M2 [8] is a mapping language which is specialized for the transformation to
OWL.

Sharma et al. [11] present an approach that automatically processes several
spreadsheets in order to create an ontology (classes and properties) with instance

12 https://github.com/marcelotto/spread2rdf

https://github.com/marcelotto/spread2rdf


data. In this process the ranges of data type properties are extracted automatically,
object type properties are found and classes are generated.

Any23 (Anything To Triples)13 is a library that is able to convert structured
data, especially CSV, to RDF. The algorithm converts every cell to a triple,
whereas each row represents a resource and columns serve as properties.

csv2rdf4lod-automation14 is an application that can also be used to convert
CSV to RDF.

TabLinker15 requires a specifically annotated Excel file in order to convert it
to RDF. It uses the built-in style functionality of Excel to save these annotations
in the spreadsheet.

In summary, the previously presented approaches allow knowledge experts to
create RDF data from various sources. Typically a mapping language is used.
In contrast to our approach, the transformation steps are designed as a batch
process and are not done simultaneously. Additionally, the mappings needed for
transformation are hard to define for inexperienced users. Our approach uses a
given and fixed mapping and does a simultaneous transformation. None of the
existing tools supports incremental updating.

4.2 Support for Entering & Processing RDF

The following approaches focus on entering, processing and working with RDF
data, especially in a user-friendly way. Inexperienced users are therefore also able
to create semantic data.

Pohl [9] published rdfedit, a web-based tool to create RDF data that could also
be used by Semantic Web laymen. Using a subject-predicate-object table, users
were able to enter labels which were mapped to URIs using the now discontinued
Semantic Web search engine Sindice. Auto completion of already loaded concepts
was also possible.

RDForms16 allows for creating RDF triples using forms which are predefined
by templates. Whenever the user enters something in the form, it is simultaneously
transferred to RDF triples. RDFEdit17 is an editor reusing RDForms which is
able to search, view and edit RDF data. Aditya Kalyanpur et al. [5] proposed an
RDF editor equipped with the RDF Instance Creator (RIC) feature. They follow
the same form-based approach like RDForms.

Another approach, RightField [13], as its name suggests, focuses on ensuring
that only data that is correct with respect to a given ontology may be entered
into a spreadsheet.

Tripcel18 also uses the spreadsheet metaphor to read and process RDF data.
Therefore, the author created an expression language which allows for defining

13 https://any23.apache.org/
14 https://github.com/timrdf/csv2rdf4lod-automation/wiki
15 https://github.com/Data2Semantics/TabLinker
16 http://rdforms.org/
17 https://joinup.ec.europa.eu/software/rdfedit/description
18 http://www.ifs.univie.ac.at/schandl/2009/06/tripcel

https://any23.apache.org/
https://github.com/timrdf/csv2rdf4lod-automation/wiki
https://github.com/Data2Semantics/TabLinker
http://rdforms.org/
https://joinup.ec.europa.eu/software/rdfedit/description
http://www.ifs.univie.ac.at/schandl/2009/06/tripcel


RDF terms in a sheet. Additionally, users may call functions on them just like
they are used to from typical spreadsheet tools (e.g., sum function).

The previously mentioned approaches are more user friendly than typical
ontology editors, which we will discuss in the next section. Nevertheless, unlike
our tool they still require considerable RDF knowledge in order to be used or
configured. None of them uses the spreadsheet metaphor in a way that enables a
fast data entry as we do.

4.3 Ontology Editors

Ontology editors are specialized on creating and modifying ontologies using a
graphical user interface. Since this requires certain experience in the knowledge
modelling domain, they are intended to be used by experts than novices. One
of the most widely known editors is Protégé19, which is quite easily extensible
due to its plug-in architecture. Its GUI is adaptable to various modelling use
cases. Additionally, a web-based version called WebProtégé20 is available, that
allows for collaboratively working on and sharing ontologies. There are also
commercial solutions that offer similar functionality like TopBraid Composer21

by TopQuadrant or OntoStudio22 by Semafora.

Swoop [6] is an open-source and web-based ontology editor, which focuses
on providing a web browser look and feel. A text editor is used to modify the
resources which can be “browsed” to using their URI.

The approaches presented in this section are well-suited for ontology creation,
i.e. classes and properties (TBox). They are rather intended for experts than for
novices. Regardless of whether a user is experienced or not, creating instances
(ABox) is rather cumbersome with these editors. But still, Protégé is often used
as a standard data entry tool in industry. Thus, our focus is on enabling users,
especially novices, to easily create instance data.

4.4 Spreadsheet Editors

Probably the most widely known one is Microsoft Excel23 (commercial tool).
Open-source solutions are Apache OpenOffice Calc24, LibreOffice Calc25 and the

19 http://protege.stanford.edu
20 https://webprotege.stanford.edu/
21 http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-

edition/
22 http://www.semafora-systems.com/en/products/ontostudio/
23 https://products.office.com/en-us/excel
24 https://www.openoffice.org/product/calc.html
25 https://www.libreoffice.org/discover/calc/

http://protege.stanford.edu
https://webprotege.stanford.edu/
http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
http://www.semafora-systems.com/en/products/ontostudio/
https://products.office.com/en-us/excel
https://www.openoffice.org/product/calc.html
https://www.libreoffice.org/discover/calc/


web-based EtherCalc26. Other web-based solutions are WikiCalc27, SocialCalc28,
the Drupal29 module Sheetnode30 and the commercial tool Zoho Sheet31.

However, unlike our approach, none of these editors uses an RDF graph as
basic data model and can easily export RDF without first defining a use-case
specific mapping.

5 Conclusion and Outlook

In this paper we presented a collaborative web-based tool that uses the spreadsheet
metaphor to enable all users, especially those inexperienced in Semantic Web
concepts, to create RDF data. Each entry into a cell of the spreadsheet is
simultaneously transferred into triple statements. This leads to the creation
of four times as many statements in the same time compared to alternative
approaches. At the same time, the quality of the statements is similar to that
achieved by using Protégé, and significantly outperforming it in four metrics. An
online demo of our application is available32.

In future, our investigations will focus on users creating and working on a
knowledge base together, as well as creating and using a shared vocabulary. To
better support the entering process, we intend to directly visualize consequences of
the current modelling step (e.g., introducing a new class or property). This could
be done using semantic graph visualization or showing previews of knowledge
service results (e.g., faceted search). Additionally, we intend to support gener-
ating spreadsheets pre-filled with imported structured data (especially existing
knowledge graphs) that can then be modified or extended by the user.

Acknowledgements Parts of this work have been funded by the German
Federal Ministry of Economic Affairs and Energy in the project PRO-OPT
(01MD15004D) and by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) in the project Managed Forgetting (DE 420/19-1).

References

1. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs.
In: Proceedings of the 3rd international semantic web conference (ISWC2004) (2004)

2. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous
data. In: Proceedings of the 7th Workshop on Linked Data on the Web. CEUR
Workshop Proceedings, vol. 1184 (Apr 2014)

26 https://ethercalc.net/
27 http://www.softwaregarden.com/products/wikicalc/
28 https://www.socialtext.net/open/socialcalc
29 http://www.drupal.com/
30 https://www.drupal.org/project/sheetnode
31 https://www.zoho.com/docs/sheet.html
32 http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/

https://ethercalc.net/
http://www.softwaregarden.com/products/wikicalc/
https://www.socialtext.net/open/socialcalc
http://www.drupal.com/
https://www.drupal.org/project/sheetnode
https://www.zoho.com/docs/sheet.html
http://www.dfki.uni-kl.de/~mschroeder/rdf-spreadsheet-editor/


3. Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A., Turbati, A., Vergata, T.:
Sheet2RDF: A flexible and dynamic spreadsheet import&lifting framework for RDF.
In: Lecture Notes in Computer Science. pp. 131–140 (2015)

4. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: Rdf123: from spreadsheets to RDF.
The Semantic Web-ISWC 2008 pp. 451–466 (2008)

5. Kalyanpur, A., Golbeck, J., Grove, M., Hendler, J.: An RDF editor and portal
for the semantic web. In: Semantic Authoring, Annotation & Knowledge Markup
Workshop (2002)

6. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: A web ontology
editing browser. Web Semantics: Science, Services and Agents on the World Wide
Web 4(2), 144–153 (2006)

7. Laugwitz, B., Held, T., Schrepp, M.: Construction and Evaluation of a User
Experience Questionnaire, pp. 63–76. Springer Berlin Heidelberg, Berlin, Heidelberg
(2008)

8. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: M2: A language for map-
ping spreadsheets to OWL. OWL: Experiences and Directions (OWLED), Sixth
International Workshop (2010)

9. Pohl, O.: rdfedit: User Supporting Web Application for Creating and Manipulating
RDF Instance Data, pp. 54–59. Springer International Publishing, Cham (2014)

10. Schröder, M., Jilek, C., Hees, J., Hertling, S., Dengel, A.: Rdf spreadsheet editor:
Get (g)rid of your rdf data entry problems. In: CEUR workshop proceedings. vol.
1963, pp. Paper–635 (2017)

11. Sharma, K., Marjit, U., Biswas, U.: Automatically converting tabular data to rdf:
An ontological approach. International Journal of Web & Semantic Technology
(IJWesT) 6(3) (2015)

12. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA:
Metric-based ontology quality analysis. In: Proceedings of the IEEE Workshop on
Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous
Data and Knowledge Sources (ICDM’05) (2005)

13. Wolstencroft, K., Owen, S., Horridge, M., Krebs, O., Mueller, W., Snoep, J.L.,
du Preez, F., Goble, C.: RightField: embedding ontology annotation in spreadsheets.
Bioinformatics 27(14), 2021–2022 (2011)

14. World Wide Web Consortium: R2RML: RDB to RDF mapping language. https:
//www.w3.org/TR/r2rml/ (2012), accessed: 2017-04-28

15. World Wide Web Consortium: RDF 1.1 Turtle. https://www.w3.org/TR/turtle/
(2014), accessed: 2017-04-28

https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/turtle/

	An Easy & Collaborative RDF Data Entry Method using the Spreadsheet Metaphor

