

 the resulting modified Eppstein algorithm is implemented as follows:

 task two is solved in the following way:

 a new dummy vertex A’ is created

 all P-edges starting in A are duplicated (see orange edge)

 run modified Eppstein with A’ as the starting node

 for all paths ending on P,

 every edge is inverted and

 the above procedure is executed

 both results are merged

Evaluation

 evaluation based on the training set of the ESWC 2016 Top-k Shortest Path Challenge

 successfully solved all queries in the challenge

 training set: 9,996,907 triples, 7,598,913 of them being literal statements, 394,085 multiple edges,

407 reflexive edges, 181,702 duplicate statements, average out degree of vertices 6.03 (s.d. 4.51)

 high k results in a high overhead since more potentially invalid paths are found

 the relation between k and the overhead of all queries is depicted in Figure 2

 algorithm's overhead increases with the number of loops

SPARQL

 SPARQL endpoint (FUSEKI) which can extract top k shortest paths

 example query:

 example response:

Conclusion

 approach for finding top-k shortest paths based on Eppstein’s algorithm which induces only

moderate overhead

 successfully solved all tasks given in the ESWC 2016 Top-k Shortest Path Challenge

 in future versions we intend to lazily build heaps and try to predict invalid paths earlier

Acknowledgement

This work was partially funded by the BMBF project Multimedia Opinion Mining (MOM: 01WI15002).

Top-k Shortest Paths

in Directed Labeled Multigraphs
Sven Hertling, Markus Schröder, Christian Jilek, Andreas Dengel

Abstract
A top-k shortest path algorithm finds the k shortest paths of a given graph ordered by length.

Interpreting graphs as RDF may lead to additional constraints, such as special loop

restrictions or path patterns. Thus, traditional algorithms such as the ones by Dijkstra, Yen or

Eppstein cannot be applied without further ado. We therefore implemented a solution method

based on Eppstein's algorithm which is thoroughly discussed in this paper. Using this method

we were able to solve all tasks of the ESWC 2016 Top-k Shortest Path Challenge while

achieving only moderate overhead compared to the original version. However, we also

identified some potential for improvements. Additionally, a concept for embedding our

algorithm into a SPARQL endpoint is provided.

Contact:

Msc. Sven Hertling

Researcher - Knowledge Management Department

German Research Center for Artificial Intelligence

DFKI GmbH

Phone: +49 631 20575-5230

Mobile: +49 175 160 12 15

Mail: sven.hertling@dfki.de

Website: http://km.dfki.de/sven-hertling-msc

1

Fig. 2. Relation of k and corresponding overhead

dbr:Felipe_Massa
dbr:Red_Bull

Introduction

 shortest path: obvious link between resources

 subsequent shortest paths: maybe even more interesting relationships

 interpreting graphs as RDF may lead to additional constraints

 common algorithms (e.g. Dijkstra, Yen, Eppstein, …) cannot be applied without further ado

Approach
 two tasks in ESWC top-k shortest path challenge:

1. top-k shortest valid paths

2. every path should have the edge P as the outgoing edge of src or the incoming edge of dst

 a path is valid only if it contains unique triples (do not use the same triple twice in one path)

 vertices can be visited multiple times (Yen’s algorithm which forbids loops would not find such

paths)

 approach based on Eppstein algorithm (k shortest path algorithm with loops)

 compute single destination shortest path tree T (e.g. Dijkstra) – all other edges are called

sidetracks (G – T)

 build a graph P(G) based on heaps which orders all sidestracks on the shortest path

from v to the destination

 most vertices in P(G) correspond to a valid path (this results in a moderate overhead

compared to the Eppstein algoritm)

 a path is built up by using all activated sidetracks, otherwise use shortest path

 example graph:

 corresponding graph P(G):

 special cases for multiple edges and cycles:

SELECT *

WHERE {

 dbr:Felipe_Massa !:* dbr:Red_Bull.

 FILTER(?r1 = dbp:after).

}

LIMIT 2

?length ?r0 ?r1 ?r2 ?r3 ?r4 ?r5 ?r6

7 dbr:Felipe
_Massa

dbp:after dbr:Robert
_Kubica

dbp:first
Win

dbr:2008
_Canadian
_Grand
_Prix

dbp:third
Team

dbr:Red
_Bull

7 dbr:Felipe
_Massa

dbp:after dbr:Robert
_Kubica

dbo:first
Win

dbr:2008
_Canadian
_Grand
_Prix

dbp:third
Team

dbr:Red
_Bull

… A
…

A u6
p3

u3 u4
p4

A u1
p1

A, P, u3, p7, B

A, p3, u6, P, B

A, P, u3, p4, u4,

p5, u5, p6, u3,

p7, B

A, p1, u1, p2,

u2, p8, B

u3 u4
p4

pruning because of duplicate sidetracks

𝐻𝐺(𝐴)

𝑖𝑛𝑖𝑡

𝐻𝐺(𝑢4)

heap edge

cross edge

A

u6

u3

u1 u2

B

u4 u5

p1

p2

p3

P

p5

p6

p7

p8

P

Shortest Path Tree (T)

Sidetracks (G – T)

p4

A !:* B =

zero or more properties

not matching URI „:“

as long as P(G) can be iterated AND k paths are not found

build path p based on activated sidetracks

p is… valid invalid

add p to result

p is valid or

contains multiple shortest

path edges true false

extend P(G)

select next node in P(G) for Breadth-first search

(b) only valid paths are added

(c) P(G) is pruned due to multiple sidetracks

(a) built path to check its validity

Our modifications

Fig. 1. Modified Eppstein Algorithm

𝐻𝐺(𝑣)

u3

u4 u5

p4‘

p5

p6 p4

u3

u4 u5

p4‘

p5

p6 p4
p6‘

 in this case p4 and p4’ are activated.

 Thus, triple (u4,p5,u5) is used twice.

 In order to detect this invalidity the path

 has to be built.

 in this case p4 and p4’ are activated. But P(G)

has to be extended since p5’ and p6’ can be

activated in the future which would result in a

valid path.

p5‘

A

u6

u3

u1 u2

B

u4 u5

p1

p2

p3

P

p5

p6

p7

p8

P

p4
A‘

P

