
 

 the resulting modified Eppstein algorithm is implemented as follows: 

 

 

 

 

 

 

 

 

 

 task two is solved in the following way: 

 a new dummy vertex A’ is created 

 all P-edges starting in A are duplicated (see orange edge) 

 run modified Eppstein with A’ as the starting node 

 for all paths ending on P, 

   every edge is inverted and 

    the above procedure is executed 

 both results are merged 

   

Evaluation 

 evaluation based on the training set of the ESWC 2016 Top-k Shortest Path Challenge 

 successfully solved all queries in the challenge 

 training set: 9,996,907 triples, 7,598,913 of them being literal statements, 394,085 multiple edges, 

407 reflexive edges, 181,702 duplicate statements, average out degree of vertices 6.03 (s.d. 4.51) 

 high k results in a high overhead since more potentially invalid paths are found 

 the relation between k and the overhead of all queries is depicted in Figure 2 

 algorithm's overhead increases with the number of loops 

 

 

 

 

 

 

 

 

 

 

 

SPARQL 

 SPARQL endpoint (FUSEKI) which can extract top k shortest paths 

 example query: 

 

 

 

 

 example response: 

 

 

 

 

 

 

 

Conclusion 

 approach for finding top-k shortest paths based on Eppstein’s algorithm which induces only 

moderate overhead 

 successfully solved all tasks given in the ESWC 2016 Top-k Shortest Path Challenge 

 in future versions we intend to lazily build heaps and try to predict invalid paths earlier 
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Top-k Shortest Paths  

in Directed Labeled Multigraphs 
Sven Hertling, Markus Schröder, Christian Jilek, Andreas Dengel 

Abstract 
A top-k shortest path algorithm finds the k shortest paths of a given graph ordered by length. 

Interpreting graphs as RDF may lead to additional constraints, such as special loop 

restrictions or path patterns. Thus, traditional algorithms such as the ones by Dijkstra, Yen or 

Eppstein cannot be applied without further ado. We therefore implemented a solution method 

based on Eppstein's algorithm which is thoroughly discussed in this paper. Using this method 

we were able to solve all tasks of the ESWC 2016 Top-k Shortest Path Challenge while 

achieving only moderate overhead compared to the original version. However, we also 

identified some potential for improvements. Additionally, a concept for embedding our 

algorithm into a SPARQL endpoint is provided. 
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Fig. 2. Relation of k and corresponding overhead 

dbr:Felipe_Massa 
dbr:Red_Bull 

Introduction 

 shortest path: obvious link between resources 

 subsequent shortest paths: maybe even more interesting relationships 

 interpreting graphs as RDF may lead to additional constraints 

 common algorithms (e.g. Dijkstra, Yen, Eppstein, …) cannot be applied without further ado 

 

Approach 
 two tasks in ESWC top-k shortest path challenge: 

1. top-k shortest valid paths 

2. every path should have the edge P as the outgoing edge of src or the incoming edge of dst 

 a path is valid only if it contains unique triples (do not use the same triple twice in one path) 

 vertices can be visited multiple times (Yen’s algorithm which forbids loops would not find such 

paths) 

 approach based on Eppstein algorithm (k shortest path algorithm with loops) 

 compute single destination shortest path tree T (e.g. Dijkstra) – all other edges are called 

sidetracks (G – T) 

 build a graph P(G) based on heaps            which orders all sidestracks on the shortest path 

from v to the destination 

 most vertices in P(G) correspond to a valid path (this results in a moderate overhead 

compared to the Eppstein algoritm) 

 a path is built up by using all activated sidetracks, otherwise use shortest path 

 example graph: 

 

 

 

 

 

 

 corresponding graph P(G): 

 

 

 

 

 

 

 

 

 

 special cases for multiple edges and cycles: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SELECT * 

WHERE { 

 dbr:Felipe_Massa !:* dbr:Red_Bull. 

 FILTER(?r1 = dbp:after). 

} 

LIMIT 2 

?length ?r0 ?r1 ?r2 ?r3 ?r4 ?r5 ?r6 

7 dbr:Felipe
_Massa 

dbp:after dbr:Robert 
_Kubica 

dbp:first 
Win 

dbr:2008 
_Canadian 
_Grand 
_Prix 

dbp:third 
Team 

dbr:Red 
_Bull 

7 dbr:Felipe
_Massa 

dbp:after dbr:Robert 
_Kubica 

dbo:first 
Win 

dbr:2008 
_Canadian 
_Grand 
_Prix 

dbp:third 
Team 

dbr:Red 
_Bull 
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Our modifications 

Fig. 1. Modified Eppstein Algorithm 
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 in this case p4 and p4’ are activated. 

    Thus, triple (u4,p5,u5) is used twice. 

    In order to detect this invalidity the path 

    has to be built. 

 in this case p4 and p4’ are activated. But P(G) 

has to be extended since p5’ and p6’ can be 

activated in the future which would result in a 

valid path. 
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