
Top-k Shortest Paths in Directed Labeled
Multigraphs

Sven Hertling1, Markus Schröder1, Christian Jilek1, and Andreas Dengel1,2

1 Knowledge Management Group, German Research Center for Artificial Intelligence
(DFKI) GmbH, Trippstadter Straße 122, Kaiserslautern, Germany

2 Knowledge-Based Systems Group, Department of Computer Science, University of
Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
{sven.hertling, markus.schroeder, christian.jilek,

andreas.dengel}@dfki.de

Abstract. A top-k shortest path algorithm finds the k shortest paths of
a given graph ordered by length. Interpreting graphs as RDF may lead to
additional constraints, such as special loop restrictions or path patterns.
Thus, traditional algorithms such as the ones by Dijkstra, Yen or Epp-
stein cannot be applied without further ado. We therefore implemented a
solution method based on Eppstein’s algorithm which is thoroughly dis-
cussed in this paper. Using this method we were able to solve all tasks
of the ESWC 2016 Top-k Shortest Path Challenge while achieving only
moderate overhead compared to the original version. However, we also
identified some potential for improvements. Additionally, a concept for
embedding our algorithm into a SPARQL endpoint is provided.

Keywords: top-k shortest paths, loop restrictions, Eppstein’s algorithm

1 Introduction

A common approach for representing knowledge is the usage of a knowledge
graph. Such graphs are well-known for their ability to describe relationships be-
tween concepts. Usually, a shortest path explains an obvious link between them,
whereas subsequent shortest paths could reveal even more interesting relation-
ships. A general way to compute such paths is the usage of a top-k shortest path
algorithm which outputs shortest paths ordered by weight or length, respectively.
In the area of semantic web, in which knowledge graphs are typically represented
using RDF, such algorithms were already applied [3, 7]. Interpreting graphs as
RDF may lead to additional constraints, such as special loop restrictions or
path patterns. In our case we will conceive an RDF graph as a directed labeled
multigraph having RDF resources as vertices and RDF properties as edges. We
further want to disallow paths including the same RDF triple (vertex - edge -
vertex) multiple times. Apart from that, we tolerate multiply visited vertices
and edges. That is why common algorithms cannot be applied without further
ado. Additionally, even suitable modifications may result in unacceptable time
and memory consumption in practice. For example, a slightly modified Dijkstra

2 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

algorithm is not practical due to the large size of typical RDF graphs. Consid-
ering the constraints mentioned above, this paper proposes a solution method
based on Eppstein’s top-k shortest path algorithm [2].

The paper is structured as follows: In Section 2 other papers mainly about
finding shortest paths are presented. Section 3 explains our approach which is
evaluated and discussed in Sections 4 and 5. Our algorithm’s results on the
evaluation sets of the ESWC 2016 Top-k Shortest Path Challenge are separately
addressed in Section 6. Last, we shortly introduce our SPARQL endpoint for
shortest paths (Section 7) and give an outlook on possible future work (Section
8).

2 Related Work

Approaches of finding top-k shortest paths can be divided in two categories based
on whether their resulting paths are loopless or not. The latter is a less complex
task.

One well-known representative of this category is Eppstein’s algorithm [2]. Its
core is a bounded-degree graph which outputs k paths using breadth-first search.
Given a graph with n vertices and m edges this results in a time complexity
of O(m + n log n + k). There are various modified versions: The algorithm by
Jiménez et al. [5] lazily builds data structures for practical improvements whereas
Aljazzar et al. [1] allow the usage of a heuristic function to guide through the
search space.

Yen’s algorithm [12] is an example of the other category finding loopless
paths. It has a time complexity of O(kn(m+n log n)) which results from calling
Dijkstra’s algorithm multiple times to compute shortest paths.

Examining the complexity of evaluating property paths defined in SPARQL
[6, 8] and retrieving paths from large datasets [3, 11] are other related research
areas of interest.

More details will be given in the next section which is about our approach.

3 Approach

While Eppstein’s top-k shortest path algorithm [2] finds paths with loops, our so-
lution ensures that every path additionally complies to a unique triple condition.
In particular, a path and the unique triple condition are defined as follows:

Definition 1 A path is a sequence of alternating RDF resources and properties
(r0, p1, r1, . . . , pn, rn) where n > 0.

Definition 2 The unique triple condition for a path (r0, p1, r1, . . . , pn, rn) is
true if and only if ∀ 0 < i ≤ n : ∃!(ri−1, pi, ri) ∈ p.

A path is valid if (and only if) the unique triple condition is true.
There are paths which comply to this condition but contain multiple visited

vertices. Yen’s algorithm [12] would consider these paths to contain loops. Thus,

Top-k Shortest Paths in Directed Labeled Multigraphs 3

we decided against softening the loop restriction on the one hand and inserting
the unique triple condition on the other.

Our contribution is based on Eppstein’s algorithm [2] which is shortly ex-
plained in the following. (For a more detailed introduction we kindly refer the
reader to the original paper.) The algorithm uses a bounded-degree graph P (G)
built in O(m + n log n) that outputs k paths in linear time using breadth-first
search. For building P (G) a single source shortest path tree T for target vertex
t has to be computed. All edges which are not part of T are called sidetrack
edges, thus G− T is a sidetrack graph. P (G) is built with the help of two kinds
of heaps: (1) HT (v) forms a heap of all minimal sidetracks on the shortest path
from v to t. (2) Hout(v) forms a heap of all outgoing sidetracks of v except
the minimal sidetrack. Merging HT (v) and Hout(v) results in HG(v). All HG are
connected by so-called cross edges to form P (G). A breadth-first search on P (G)
with a priority queue outputs the top-k shortest paths ordered by weight in O(k).

Our approach is depicted as pseudocode in Algorithm 1. In general, the
given RDF dataset is interpreted as an edge-label directed multigraph (line 1).
Before running the algorithm’s main part, all statements containing a literal
are removed in a preprocessing step3. Lines 2 - 13 are directly adopted from
Eppstein: Like stated above, the shortest path tree T , the sidetrack graph G−T ,
the edge weights δ(e) and the heaps HT and Hout are computed and necessary
data structures are initialized.

Three modifications to the original Eppstein algorithm are made: (a) Every
path has to be built and/or checked in order to immediately check its validity
(line 16), (b) only valid paths are added to the result list R (lines 17-19) and (c)
P (G) is pruned whenever p is invalid due to multiple sidetracks (line 20).

There are cases in which a path does not comply to the unique triple con-
dition: It may contain multiply used (1) sidetracks and/or (2) shortest path
edges.

To item (1): Using P (G) Eppstein’s algorithm keeps track of activated side-
tracks, thus multiply used ones are easily detectable. In this case we can stop
adding a cross edge, because all further paths would become invalid. Addition-
ally, if k is greater than the number of possible valid paths in G, this pruning
guarantees our algorithm’s termination. However, the computation does not stop
until every sidetrack combination is generated and checked which may result in
significant overhead.

To item (2): Since P (G) only contains sidetracks, each path has to be built
in order to detect multiply used shortest path edges. In that case we have to
extend P (G) and add a cross edge, since there could be a sidetrack in P (G)
which allows bypassing this problematic shortest path edge in the future. It’s

3 This is done since providing a literal as a target node could be ambiguous (e.g.
several persons having the same first name). Thus, to apply our algorithm in such
use cases, this ambiguity has to be resolved first. For example, one could first search
all resources associated with the given literal and then choose the one that is actually
meant as the target node (or subsequently run the algorithm on all of them).

4 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

not possible to remove these nodes in HG(v), since the algorithm would then
miss cross edges to potential valid paths.

A path is built with a (possibly empty) queue of sidetracks S and the start
node s (see (a) above and line 16). If S already contains duplicates (case 1, see
above) building the path is obsolete. If no duplicates are detected, the system
initiates the building process in which sidetracks (if suitable) are preferred over
shortest path edges. While building the path, duplicate shortest path edges can
be detected by keeping track of used edges. There are special cases in which the
given end node t is visited multiple times. Thus, the building path algorithm
stops at t only if all given sidetracks in the queue are used.

In the given algorithm, P (G) is only extended and HG(v) only constructed if
necessary (lines 21 - 23). This is possible due to the pruning condition (line 20).
Next, a breadth-first traversal step is performed on P (G) and weights are up-
dated (lines 25 - 29). Finally, all found and valid paths in R are returned (line 32).

For more complex problems we would also like to consider a special property
path condition which we state as follows:

Definition 3 The special property path condition for a path (r0, p1, r1, . . . , pn, rn)
and a given property P is true if and only if p1 ≡ P ∨ pn ≡ P .

A naive approach would be to simply delete all (s,¬P, r) edges from G. However,
this would prevent valid paths like (s, P, . . . , s,¬P, . . .) from being found. That’s
why our approach (see Algorithm 2) introduces a dummy vertex v which ensures
that all considered paths contain P as the first property. First, the algorithm
collects all P -edges that start in s (we denote this set as A). If none is found
the algorithm terminates, leaving only P -edges which end in t to be checked. By
inserting the dummy vertex v and connecting it to all head(e) of A we ensure
that all paths from v to t contain P as the first property. After each found path
the algorithm has to substitute v with s which is valid, since there actually exist
outgoing P -edges from s.

Finding paths containing P -edges that end in t can be reduced to the pre-
viously solved problem. We therefore invert all edges in G and call Algorithm
2 with interchanged s and t. The resulting paths have to be reversed. Finally,
both result lists are merged and ordered by length also removing duplicates.

In order to apply this approach, the previously introduced build path algo-
rithm had to be modified. Since every path starts with (v, P, r, . . .) the occurrence
of (s, P, r) would not be recognized as a duplicate. This is solved by artificially
adding (s, P, r) to the activated sidetrack queue S and to the set of already used
edges.

How our method performs in practical scenarios is discussed in the next sec-
tion.

Top-k Shortest Paths in Directed Labeled Multigraphs 5

Data: start node s, end node t, required number of paths k, dataset D
Result: k paths between s and t in D ordered by length complying to unique

triple condition
1 interpret D as an edge-labeled directed multigraph G;
2 compute shortest path tree T starting from t using Dijkstra;

3 compute sidetrack graph G̃ = G− T ;

4 for e ∈ G̃ do
5 compute δ(e) = l(e) + d(head(e), t)− d(tail(e), t);
6 end
7 for v ∈ T do
8 compute HT (v) and Hout(v);
9 end

10 initialize initial edge init = (∅, ∅, s);
11 initialize heap H =< init >;
12 initialize graph P (G) = ({init}, ∅);
13 initialize result list R =<>;
14 while H is not empty ∧ |R| < k do
15 remove minimal element m from H;
16 build path p using m;
17 if p is valid then
18 add p to R;
19 end
20 if p is valid ∨ p contains multiple shortest path edges then
21 compute HG(head(m)) and add to P (G);
22 let r = root(HG(head(m)));
23 add cross edge (m, r) with weight δ(r) to P (G);

24 end
25 for e ∈ out(m) do
26 let n = head(e);
27 compute δ(n) = δ(m) + l(e);
28 add n to H;

29 end
30 remove m from P (G);

31 end
32 return R;

Algorithm 1: Modified Eppstein Algorithm

6 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

Data: start node s, end node t, required number of paths k, property P ,
dataset D

Result: k paths between s and t in D ordered by length complying to
unique triple and special property path condition with P

1 interpret D as a edge-labeled multigraph G;
2 let A = {e ∈ G : tail(e) ≡ s ∧ label(e) ≡ P};
3 if A is empty then
4 return ∅;
5 end
6 construct an arbitrary vertex v /∈ G;
7 add v to G;
8 for e ∈ A do
9 add edge (v, head(e)) to G;

10 end
11 run modified Eppstein with s′ = v, t′ = t, k′ = k;

Algorithm 2: Reuse of modified Eppstein to retrieve paths complying to the
special property path condition

4 Evaluation

We evaluated our approach on the training set of the ESWC 2016 Top-k Shortest
Path Challenge. This challenge consists of two tasks: Besides finding the top-
k shortest paths complying to the unique triple condition (see Definition 2),
the second one additionally introduces a special property path restriction (see
Definition 3).

The training set corresponds to a 10% dataset generated from the DBpedia
knowledge base [9,10]. Since the data is not generated artificially like the LUBM
dataset [4], it is very heterogeneous and there are no well structured classes.
The dataset is processed so that there are no blank nodes, untyped classes or
unparsable triples4. As a consequence, each resource r is not a blank node and
has at least got one statement (r rdf:type type) after the processing.

In total the training set consists of 9,996,907 triples, 7,598,913 of them being
literal statements. After their removal the resulting set contains 2,397,994 triples.
There are 181,702 duplicate statements which do not provide additional infor-
mation. In fact, there are 13 statements which appear 4 times in the dataset. Our
algorithm has to deal with multigraphs since there are 394,085 multiple edges
(also including duplicate triples). Moreover, there are 407 reflexive edges which
means that also smallest loops have to be handled. The most important number
is the average out degree. In this set, the mean value is 6.03 with a standard
deviation of 4.51. The vertices’ number of outgoing edges ranges from 0 to 106.

4 In particular, we found unparsable datatypes like
<http://dbpedia.org/datatype/brake horsepower>. Our first solution removed
them, in a later version they were fixed by URL-encoding the blank.

Top-k Shortest Paths in Directed Labeled Multigraphs 7

In this section we analyze our approach in terms of performance, space and
overhead compared to the original Eppstein algorithm. Table 1 shows our results
of Task 1 in which four queries with increasing values of k were given. For each
value we recorded six different measures which are explained in more detail in
the following:

The first one is the number of iterations needed by our algorithm, i.e. the
number of executions of the while loop in line 14. Additional iterations in com-
parison to Eppstein’s algorithm are characterized by the relative overhead to k:
(iterations−k)

k . Next, we captured time in milliseconds from the computation of
the shortest path tree T (line 2) till the return of R (line 32). All experiments
were conducted on a typical end user notebook with an Intel 4 Core i7-4712MQ
2.30 GHz CPU, 16 GB RAM and Java 1.8 installed. The next column contains
the number of times P (G) was not extended or in other words pruned. This is
the case when multiple sidetracks are detected, thus the if condition in line 20 is
skipped. To give an impression of our algorithm’s memory consumption we ad-
ditionally record |VP (G)| and |H|. |VP (G)| is the number of vertices in P (G) (line
12) whereas |H| is the number of entries in heap H (line 11) after termination.

Like stated before, Task 2 introduced the special property path condition (see
Definition 3). This means all paths need to have P as their first (i.e. (s, P, . . .))
or last (i.e. (. . . , P, t)) property. The latter case does not appear in queries 1, 3
and 4. For query 2 we separated the cases accordingly. All measures are found
in Table 2.

The relation between k and the overhead of all queries is depicted in Figure
1. k is measured on a logarithmic scale whereas the overhead is given in percent
on a linear scale. Additionally, we plotted a trendline obtained by applying linear
regression on all query results.

Results are further discussed in the next section.

5 Discussion

Since the expected results of the challenge were provided beforehand we could
verify that our algorithm performed correctly for all queries. The individual
results of our evaluation (see Tables 1, 2 and Figure 1) will be discussed in the
following, starting with Table 1.

Obviously, a high k results in a high overhead since more potentially invalid
paths are found. This effect is mitigated by pruning of P (G). The time column
shows that 5 to 6 seconds are required to initialize the necessary data structures
of the training set (see Algorithm 1, lines 2 - 13). Additional time is needed to
discover the shortest paths which is done in the while loop. For a maximum k
query 4 needs about 40 seconds for this task having a rather low overhead of
10%. Please note that all time measurements were done using a non-optimized
version of our algorithm. During implementation we identified some potential for
improvements which was not exploited for time reasons. Moreover, we discovered
that the number of vertices in P (G) is proportional to k.

8 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

Query k Iterations Overhead Time (ms) Pruned |VP (G)| |H|
1 8 8 0.00% 6531 0 83 15
1 344 362 5.23% 6663 6 4401 715
1 1068 1128 5.61% 6833 12 16408 2296
1 20152 21663 7.49% 12404 407 293527 43701

2 3 3 0.00% 5528 0 64 6
2 4 4 0.00% 5662 0 80 8
2 79 91 15.18% 5783 4 1702 174
2 154 169 9.74% 5908 4 3193 336

3 36 36 0.00% 5785 0 64 6
3 336 336 0.00% 5932 0 80 8
3 4866 5034 3.45% 8147 4 1702 174

4 2 2 0.00% 6137 0 78 4
4 16 16 0.00% 6230 0 524 34
4 250 254 1.60% 6416 0 7389 515
4 1906 1980 3.88% 8393 34 58426 3984
4 20224 21858 8.07% 13980 678 619359 42879
4 175560 192367 9.57% 45785 7592 5628758 380839

Table 1. Results of Task 1

Query k Iterations Overhead Time (ms) Pruned |VP (G)| |H|
1 32 32 0.00% 6912 0 391 63
1 98 98 0.00% 8353 0 1410 200
1 1914 1990 3.97% 9119 28 27063 4030
1 16632 16999 2.20% 12929 119 247948 34909
1 212988 220639 3.59% 45968 2319 3178408 451439

2 (s, P, . . .) 3 3 0.00% 6418 0 61 6
2 (. . . , P, t) 3 3 0.00% 5297 0 99 5
2 (s, P, . . .) 4 4 0.00% 5519 0 77 8
2 (. . . , P, t) 4 4 0.00% 4560 0 127 8
2 (s, P, . . .) 76 88 15.78% 5701 4 1635 167
2 (. . . , P, t) 76 84 10.52% 4589 3 2818 170
2 (s, P, . . .) 151 167 10.59% 5686 5 3149 328
2 (. . . , P, t) 151 169 11.92% 4616 5 5572 338
2 (s, P, . . .) 2311 2848 23.23% 7787 232 52309 5297
2 (. . . , P, t) 2311 2519 9.00% 7988 83 89060 5362

3 12 12 0.00% 5652 0 295 24
3 76 76 0.00% 5554 0 1677 151
3 1440 1488 3.33% 7259 16 32991 2869
3 8088 8377 3.57% 10122 109 173570 16281

4 1 1 0.00% 7827 0 34 1
4 6 6 0.00% 8493 0 218 12
4 72 74 2.77% 7664 0 2166 146
4 614 641 4.39% 8025 12 19182 1280
4 5483 6018 9.75% 10960 198 172989 11788
4 52649 58671 11.43% 20077 2640 1707021 115534
4 471199 540815 14.77% 71884 26962 15997816 1065488

Table 2. Results of Task 2

Top-k Shortest Paths in Directed Labeled Multigraphs 9

100 101 102 103 104 105 106

0

5

10

15

20

25

k

ov
er

h
ea

d
in

%

query

trendline

Fig. 1. Relation of k and corresponding overhead

Most findings also apply to Table 2. Although query 2 has high prune values
the overhead is the highest in comparison to all other queries. Our assumption is
that the execution of query 2 involves a high number of loops from s to t. That
is why it has got the highest overhead of 23% for a maximum k of 2311.

Figure 1 gives a summarizing overview of the relation between k and the
overhead. Considering that k is plotted on a logarithmic scale we see that the
overhead only grows slowly. In particular, there are several queries having a k
less than 102 which do not cause any overhead. Most queries have an overhead
between 0% to 15% even if k approaches 500,000. However, for values greater
than 102 there are some outliers above 10% though not reaching 25%.

Thus, our algorithm achieves a time complexity which is moderately above
the one of Eppstein’s algorithm for the given training set. In general, our algo-
rithm’s overhead increases with the number of loops in the graph.

6 ESWC 2016 Challenge Evaluation

We also ran our algorithm on the evaluation set of the ESWC 2016 Top-k Short-
est Path Challenge. It contains 1,551,041 URIs and about 13.6 million distinct
triples, which is about 5.7 times the size of the training set used before. This
led to memory problems with our first implementation. We therefore optimized
our algorithm’s memory efficiency by indexing all triples and storing them as
an integer array during runtime. However, we still had to use a more powerful
machine compared to the one used in Section 4 in order to complete all four
evaluation tasks, in particular the fourth one. We used a virtual machine having

10 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

48 cores à 2.8 GHz5 and 492 GiB of memory running openSUSE Linux 42.1
(64-bit) and Java OpenJDK 8. The achieved results, which are principally quite
similar to those of the training set (see Section 4), are given in Table 3.

Query k Iterations Overhead Time (ms) Pruned |VP (G)| |H|
1.1 377 389 3.18% 31918 4 21115 739

1.2 53008 56231 6.08% 35154 1589 2979808 106252

2.1 (s, P, . . .) 374 386 3.20% 21283 4 20934 732
2.1 (. . . , P, t) 374 386 3.20% 23349 2 48356 725

2.2 (s, P, . . .) 52664 55877 6.10% 41206 1586 2961258 105579
2.2 (. . . , P, t) 52664 52766 0.19% 271662 23 95446490 151819

Table 3. Results of evaluation

Again, the overhead compared to the original Eppstein algorithm was mod-
erate. Tasks 1.1 to 2.1 needed less than 10 GiB of RAM, whereas up to 80 GiB
were required in order to complete Task 2.2. This results from Task 2.2 being
quite complex: in the second part of the query ((. . . , P, t)), the algorithm was
only able to prune for 23 times. Thus, P(G) had to be extended several times
resulting in very high memory usage. A low overhead of 0.2% indicates that this
is not caused by our extensions but would also have been present when using
the original Eppstein alone. Concerning runtime performance there was a notice-
able overhead induced by the virtualization, especially also related to memory
allocation. Please note that we therefore omitted freeing memory during the cal-
culation for improved runtime performance.

To better use the algorithm in our daily work (e.g. our research about ex-
planation aware computing), we embedded it into a SPARQL endpoint which is
explained in the next section.

7 SPARQL Endpoint for Shortest Paths

In this section a modification to the SPARQL evaluation is provided to use the
proposed algorithm for calculating k shortest paths. We extended the property
path semantics to also include the additional shortest paths while keeping the
SPARQL query language syntax and expressiveness. Therefore a SELECT query
is used to retrieve the path components. The idea is to create a suitable num-
ber of hidden variables containing resources and properties alternately. They are
numbered consecutively starting from zero. The path length is assigned to the
?length variable. Our approach is conform to SPARQL 1.1, i.e. FILTER and
LIMIT instructions work as expected. We used the property path syntax to en-

5 Our algorithm is still implemented as a single thread application.

Top-k Shortest Paths in Directed Labeled Multigraphs 11

code a shortest path semantic6. As an example, the first predicate can also be
restricted to always be dbp:after with the following query:

SELECT *

WHERE {

dbr:Felipe_Massa !:* dbr:Red_Bull.

FILTER(?r1 = dbp:after).

}

LIMIT 3

?length ?r0 ?r1 ?r2 ?r3 ?r4 ?r5 ?r6

7 dbr:Felipe
Massa

dbp:after dbr:Robert
Kubica

dbp:first
Win

dbr:2008
Canadian
Grand
Prix

dbp:third
Team

dbr:Red
Bull

7 dbr:Felipe
Massa

dbp:after dbr:Robert
Kubica

dbo:first
Win

dbr:2008
Canadian
Grand
Prix

dbp:third
Team

dbr:Red
Bull

7 dbr:Felipe
Massa

dbp:after dbr:Robert
Kubica

dbo:first
Win

dbr:2008
Canadian
Grand
Prix

dbo:third
Team

dbr:Red
Bull

Table 4. Example SPARQL response

A possible solution is depicted in Table 4. The downside of this approach
is that all paths have to be computed to calculate the maximum amount of
necessary variables. Another possibility is to name the variables directly in the
query. With the help of the variable length, one can check if the amount of
variables given in the query is enough. If this is not the case, the requester can
create a new query with more variables. In the following, a brief overview of our
SPARQL endpoint’s implementation is shown. It uses the proposed path algo-
rithm and responds to SELECT queries like in the given example above. We used
FUSEKI SPARQL server based on Jena introducing a new Jena subsystem called
GraphQuery. The QueryEngineMain of Jena is extended with an OpExecutor7,
making it possible to replace the evaluation of a specific operation. In this use
case only the path operation is changed and all other operations are executed as
usual. If the subject as well as the object are not variables, the proposed algo-
rithm will be executed. We had to modify the evaluation of the query to prevent

6 Given two resources A and B, A as the source and B as the target, the corresponding
SPARQL query is A !:* B. Technically, this searches for zero or more occurrences
of properties (indicated by “*”) between A and B not (“!”) matching an introduced
fake IRI “:”.

7 https://jena.apache.org/documentation/query/arq-query-eval.html

12 Sven Hertling, Markus Schröder, Christian Jilek, and Andreas Dengel

the removal of equalities in FILTER elements. Otherwise all variables which are
not explicitly defined like our hidden ones, would be removed. As a consequence
the FILTER statement would not have any effect. Creating or updating the ac-
tual dataset triggers the creation of the corresponding graph index. To create a
running FUSEKI instance for it, we used the Jena Assembler specification.

In summary, we now have a running FUSEKI server which is able to retrieve
all shortest path for a given SPARQL property path query.

8 Conclusion and Future Work

In this paper we presented several approaches for finding top-k shortest paths and
pointed out why they are not directly applicable for our specified use case. Based
on Eppstein’s algorithm we therefore implemented our own solution method
which induces only moderate overhead. We were able to solve all queries given
in the ESWC 2016 Top-K Shortest Path Challenge and additionally provided
further details on our algorithm’s performance. One general problem was the
overhead resulting from loops in the graph.

During the implementation we already identified some potential for improve-
ments concerning time and memory consumption which was not exploited due
to time reasons. For future work we could lazily build the different heaps and
try to predict invalid paths earlier. Since our algorithm would not need to follow
these paths the resulting overhead is far less.

Besides, a concept for embedding our algorithm into a SPARQL endpoint
was provided.

Acknowledgement

This work was partially funded by the BMBF project Multimedia Opinion Min-
ing (MOM: 01WI15002).

References

1. H. Aljazzar and S. Leue. K*: A heuristic search algorithm for finding the k shortest
paths. Artificial Intelligence, 175(18):2129–2154, 2011.

2. D. Eppstein. Finding the k shortest paths. SIAM Journal on computing, 28(2):652–
673, 1998.

3. A. Gubichev and T. Neumann. Path query processing on very large rdf graphs. In
WebDB. Citeseer, 2011.

4. Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems.
Web Semantics: Science, Services and Agents on the World Wide Web, 3(2-3),
2011.

5. V. M. Jiménez and A. Marzal. A lazy version of eppstein’s k shortest paths algo-
rithm. In Experimental and efficient algorithms, pages 179–191. Springer, 2003.

6. E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč. Sparql with property
paths. In The Semantic Web-ISWC 2015, pages 3–18. Springer, 2015.

Top-k Shortest Paths in Directed Labeled Multigraphs 13

7. J. Lehmann, J. Schüppel, and S. Auer. Discovering unknown connections-the
dbpedia relationship finder. CSSW, 113:99–110, 2007.

8. K. Losemann and W. Martens. The complexity of evaluating path expressions in
sparql. In Proceedings of the 31st symposium on Principles of Database Systems,
pages 101–112. ACM, 2012.

9. M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. DBpedia SPARQL
Benchmark—Performance Assessment with Real Queries on Real Data. In ISWC
2011, 2011.

10. M. Morsey, J. Lehmann, S. Auer, and A.-C. Ngonga Ngomo. Usage-Centric Bench-
marking of RDF Triple Stores. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence (AAAI 2012), 2012.

11. M. Przyjaciel-Zablocki, A. Schätzle, T. Hornung, and G. Lausen. Rdfpath: Path
query processing on large rdf graphs with mapreduce. In The Semantic Web:
ESWC 2011 Workshops, pages 50–64. Springer, 2011.

12. J. Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.

