Modeling context-aware distributed knowledge

Jorge Louçã

Jorge.L@iscte.pt

ISCTE – Instituto Superior de Ciências do Trabalho e da Empresa
Lisboa, Portugal
Main Goal and Proposition

Research goal:

to model multi-dimensional decision-making processes using artificial agents

Propositions:

• use causal cognitive maps to model software agents
• compose a collective solution to a goal through a distributed and incremental process, based on interactions
• use context in cognitive maps to define agent’s mental states
Philosophy and Artificial Intelligence: both try to understand all different kinds of perception, action and intelligence.

The association of this domains allows:

- to simulate reasoning in software programs, starting from a given conception of what can be the mind;
- to do controlled experiments aiming to understand the knowledge representation systems used in our mind to represent the world;

AI as a laboratory:
- a specified idea of what is the mind leads to experiments about new software architectures
- experiments can be seen as a way of really doing philosophy, because they search the conditions that make possible cognition in general - human intelligence.
Philosophy and artificial intelligence

Theoretical foundations: AI as a laboratory

Intelligence:
the capacity of problem solving and decision

There is no problem solving and decision capacity without some representation of the world

Folk Psychological Constructs help us to model the knowledge representation systems used by our mind, using mental states

Advantages of Folk Psychology: operational, comprehensible, an instrument to predict and explain behavior, to manipulate mental states
Philosophy and artificial intelligence

This use of mental states can act as a functionalist theory if we identify mental states in terms of their causal-functional relationships.

Functionalism identifies mental content with causal-functional roles [Goldman, 93]

Causal Covariance Theory of Content [Allen, 02]

proposes that mental states get their content by being causally related only to what they are about (e.g., to those mental states belonging to its own specific context)

This idea of using context to define mental states is adopted to manipulate mental states in a Multi-Agent System, through the use of Cognitive Maps.
Cognitive Mapping

Theoretical foundations:
using cognitive maps to model individual and collective beliefs

Cognitive Map: graphical representation of individual or collective beliefs, regarding a specific domain.

Cognitive mapping is used by psychologists and decision makers to:
- understand the behavior of actors participating in a decision making process
- detect conflicts (incoherent viewpoints)
- discuss points of view

[Carlson et Walden, 96]
Cognitive Mapping

Theoretical foundations:
using cognitive maps to model individual and collective beliefs

Example of a partial cognitive map [Louçã,00]

Reflexive character of CM - we each construct our private versions of reality and deal only with those constructions, which may or may not correspond to some real world [Lissack & Ross,99]
Collective interpretation using CM - according to Karl Weick and others, organizations can also be seen, at another abstraction level, as systems of construction and interpretation of reality [Weick,95] [Lissack & Gunz,99]

Different levels of construction and interpretation of reality:
- individual
- collective

CM facilitate reasoning, communication and discussion about individual and corporate knowledge
Research in AI using Cognitive Maps

Theoretical foundations: state of the art

<table>
<thead>
<tr>
<th>IA domain</th>
<th>Marchant, 99</th>
<th>Wellman, 94a</th>
<th>Console et al., 89</th>
<th>Zhang et al., 92 et 94</th>
<th>Park & Kim, 95</th>
<th>Chaibdraa, 97a, 97b et 98</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference from fuzzy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal inference in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qualitative probabilistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference in causal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal inference;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS; neural networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal inference;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>circuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal inference;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formal model</th>
<th>Cognitive Map</th>
<th>NPN Logic</th>
<th>Logique et Relations</th>
<th>Relations with circuits</th>
<th>Cognitive Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive map as a logical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognitive Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal link as an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>implication formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Kind of links between	Fuzzy implication	Probabilistic	Causality	Causality	Causality	Causality
concepts		causality				
Reasoning from Cognitive	yes	yes	Reason from causal	yes	yes	yes
Maps			networks			
Detect and solve conflicts	no	no	no	yes	no	yes
in MAS						

Research in AI using Cognitive Maps

Theoretical foundations: state of the art
Modeling context-aware distributed knowledge

Proposition: distributed and incremental reasoning process

An agent uses the set of concepts represented in its cognitive map. The agent composes its individual solution to the goal, represented by a partial cognitive map.

Each agent that receives an allocation message including a sub-goal, starts its own reasoning process and, in return, responds with a solution to the sub-goal. This distributed reasoning process allows representing several points of view concerning the sub-goals.
Modeling context-aware distributed knowledge

Proposition: an incremental, distributed and incremental reasoning process

The composition of the interaction matrix is done through the NPNe Methodology of Aggregating Cognitive Maps [Louçã,02a].

Only the most acute opinions are considered to compose the collective solution. A link such as (+,−) evidences a conflict in the organization. This way, the collective reasoning mechanism will detect and evidence conflicts in the collective solution, graphically represented in the form of a cognitive map, allowing a clear discussion and negotiation between the actors.
Cognitive maps composed on one hand by concepts and by causal links between those concepts, in a *strictu sensu* way [Weik, 79] and on the other hand to consider the context of concepts, allowing some kind of inference.

This way, we can define mental states from cognitive maps by getting their content from the concepts being causally related to their context. More precisely, a mental state is represented by a concept and its context.

In cognitive mapping terms we have:

1. concepts can’t be understood without context,
2. the context of a concept is composed by concepts that influence and that are influenced by the main concept and by links between those concepts,
3. each concept is coupled to its context, which can be called a *scheme* [Bougon & Komocar, 94]
Propositions: cognitive maps standing for mental states

Scheme – a concept and its context [Louçã, 02]
Propositions: cognitive maps standing for mental states

to interact agents communicate schemes communicating schemes influence agent’s mental states and develops collective knowledge

If concepts are similar and if there are conflicts, then the graphical interface supports discussion (and argumentation) between individuals, to converge to a common scheme

If concepts are not similar, then “CM aggregation”
Prototype and application in an industrial entreprise

These propositions above were tested in StrAgent, a distributed software system to support decision-making in human organizations.

SETCOM – *Electronica, S.A. (Palmela)*

industrial enterprise in the domain of telecommunications and electronics

Cognitive Maps were built from documents and interviews

5 teams - *organisation, products, markets, human resources and information departments*

Main goal: to model *collective discussion* and *consensual decision*

- to represent actors knowledge
- to show conflicts
- to support conflict resolution
A model of multi-dimensional reasoning in a multi-agent system is proposed.

Cognitive maps are used as instruments to represent agent’s mental states.

Schemes are used to compose a collective solution to a goal through a distributed and incremental process, based on agent’s interactions.

The emergence of collective knowledge is represented in the cognitive map of each agent.