Introduction to
Case-Based Reasoning

Dr. Ralph Bergmann
bergmann@informatik.uni-kl.de

Centre for Learning Systems and Applications
Research Group - Prof. Michael. M. Richter -
Department of Computer Science
University of Kaiserslautern

Case-Based Reasoning in 45 Minutes ...

• More an introduction than an overview ...
• Focus on the basic principle rather than on specific applications or tools
• Goal of the talk:
 – Brief history of CBR
 – A simple example
 – Introduction to the common vocabulary
 – Spectrum of the techniques applied
 – Advantages of CBR over alternative methods
 – Application fields
What is Case-Based Reasoning (CBR)

Case-based reasoning is [...] reasoning by remembering.

Leake, 1996

A case-based reasoner solves new problems by adapting solutions that were used to solve old problems.

Riesbeck & Schank, 1989

Case-based reasoning is a recent approach to problem solving and learning [...]

Aamodt & Plaza, 1994

Case-based reasoning is both [...] the ways people use cases to solve problems and the ways we can make machines use them.

Kolodner, 1993

Case-Based Reasoning is ...

• A methodology to model human reasoning and thinking
• A methodology for building intelligent computer systems

• CBR in a nutshell:
 – store previous experience (cases) in memory
 – to solve new problems:
 • retrieve similar experience about similar situations from the memory
 • reuse the experience in the context of the new situation: complete or partial reuse, or adapt according to differences
 • store new experience in memory (learning)

From an engineering perspective: We are mainly interested in building intelligent systems
History of CBR in U.S.A.

Roger Schank, Yale University: Cognitive Science
- 1977: Scripts for knowledge representation (Schank, Abelson)
- 1983: Dynamic Memory Theory, Memory Organization Packets
 CYRUS: First implemented CBR-System (Kolodner)
- 1983-1988: Other Systems, e.g.: JUDGE, SWALE, CHEF

Bruce Porter, Austin Texas: Concept Learning
- 1986-89: System PROTOS (Exemplar-based concept representation)

Edwina Rissland, U. of Massachusetts: Cases in Law (since 1983)
- 1990-92: Systems HYPO (Ashley) and CABARET (Skalak)

Jaime Carbonell & Manuela Veloso, Carnegie Mellon U.: Analogy
- since 1990 Prodigy/Analogy: Case-based Planning using analogy

Interest in CBR is increasing in USA (new research groups)
- since 1987 several DARPA and AAAI Workshops

History of CBR in Europe

- since 1991 Case-Based Planning: Systems Caplan/CbC, PARIS
- since 1992 European Projects INRECA, INRECA-II

Ramon Mantaras, Enric Plaza, IIIA Blanes, Spain: CBR and ML
- 1990 Case-Based Learning for medical diagnosis

Agnar Aamodt, U. Trondheim, Norway: CBR and Knowledge Acquisition
- 1991 System CREEK: Integration of Cases and general knowledge

Mark Keane, Trinity College, Dublin: Cognitive Science
- since 1988 Theory of analogical reasoning

Since 1991 Increasing interest in Europe (Several new research groups)
- 1991 First German CBR Workshop (AKCBR, GWCBR)
- 1993 First European CBR Workshop (EWCBR)
- 1995 First International CBR Conference (ICCBR)
Case-Based Reasoning Today

- Research on CBR in more than 35 universities and institutes all over the world.
- 15 commercial tools involving CBR
- Many applications already in daily use
- Several regular scientific and application-oriented events: from national workshops to the international conference
- Recent information on the World Wide Web:
 http://www.cbr-web.org/
- Upcoming Events:
 - 4th European CBR Workshop in Dublin, September 1998
 - 3rd International CBR Conference in Munich, July 1999

A Simple Example (Overview)

Technical Diagnosis of Car Faults
- Symptoms are observed (e.g. engine doesn’t start) and values are measured (e.g. battery voltage = 6.3V)
- Goal: Find the cause for the failure (e.g. battery empty) and a repair strategy (e.g. charge battery)

Case-Based Diagnosis:
- A case describes a diagnostic situation and contains:
 - description of the symptoms
 - description of the failure and the cause
 - description of a repair strategy
- Store a collection of cases in a case base
- Find case similar to current problem and reuse repair strategy
A Simple Example: What’s a Case?

- A case describes one particular diagnostic situation
- A case records several features and their specific values occurred in that situation
- A case is not a rule!!

Problem (Symptoms)
- **Problem**: Front light doesn’t work
- **Car**: VW Golf II, 1.6 L
- **Year**: 1993
- **Battery voltage**: 13.6 V
- **State of lights**: OK
- **State of light switch**: OK

Solution
- **Diagnosis**: Front light fuse defect
- **Repair**: Replace front light fuse

A Case Base with Two Cases

Each case describes one particular situation

- All cases are independent from each other

<table>
<thead>
<tr>
<th>CASE</th>
<th>Problem (Symptoms)</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem: Front light doesn’t work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Car: VW Golf II, 1.6 L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year: 1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery voltage: 13.6 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State of lights: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State of light switch: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnosis: Front light fuse defect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair: Replace front light fuse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CASE</th>
<th>Problem (Symptoms)</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Problem: Front light doesn’t work</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Car: Audi A6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Year: 1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Battery voltage: 12.9 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State of lights: surface damaged</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State of light switch: OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnosis: Bulb defect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair: Replace front light</td>
<td></td>
</tr>
</tbody>
</table>
Solving a New Diagnostic Problem

- A new problem must be solved
- We make several observations in the current situation
- Observations define a new problem
- Not all feature values must be known
- **Note:** The new problem is a case without solution part

Problem (Symptom):
- **Problem:** Break light doesn’t work
- **Car:** Audi 80
- **Year:** 1989
- **Battery voltage:** 12.6 V
- **State of light:** OK

Compare the New Problem with Each Case and Select the Most Similar Case

- When are two cases similar?
- How to rank the cases according to their similarity?
- **Similarity is the most important concept in CBR !!**
- We can assess similarity based on the similarity of each feature
- Similarity of each feature depends on the feature value.
- **BUT:** Importance of different features may be different
Similarity Computation

- Assignment of similarities for features values.
- Express degree of similarity by a real number between 0 and 1

Examples:

- Feature: Problem
 Front light doesn’t work \(0.8\) Break light doesn’t work \(0.4\)
 Front light doesn’t work \(0.4\) Engine doesn’t start

- Feature: Battery voltage
 \(12.6\ V \rightarrow 0.9\) \(13.6\ V \rightarrow 0.1\)
 \(12.6\ V \rightarrow 0.1\) \(6.7\ V \rightarrow 1.0\)

- Different features have different importance (weights)!
 - High importance: Problem, Battery voltage, State of light, ...
 - Low importance: Car, Year, ...

Compare New Problem and Case 1

Problem (Symptom)
- Prob.: Break light doesn’t work
- Car: Audi 80
- Year: 1989
- Battery voltage: 12.6 V
- State of lights: OK

Problem (Symptoms)
- Problem: Front light doesn’t work
- Car: VW Golf II, 1.6 L
- Year: 1993
- Battery voltage: 13.6 V
- State of lights: OK
- State of light switch: OK

Solution
- Diagnosis: Front light fuse defect
- Repair: Replace front light fuse

Very important feature: weight = 6
Less important feature: weight = 1

Similarity Computation by Weighted Average

\[
similarity(\text{new}, \text{case 1}) = \frac{1}{20} \times (6 \times 0.8 + 1 \times 0.4 + 1 \times 0.6 + 6 \times 0.9 + 6 \times 1.0) = 0.86
\]
Compare New Problem and Case 2

Problem (Symptom)
- Prob.: Break light doesn’t work
- Car: Audi 80
- Year: 1989
- Battery voltage: 12.6 V
- State of lights: OK

Problem (Symptoms)
- Prob.: Front light doesn’t work
- Car: Audi A6
- Year: 1995
- Battery voltage: 12.9 V
- State of lights: surface damaged
- State of light switch: OK

Very important feature: weight = 6
Less important feature: weight = 1

Similarity Computation by Weighted Average

\[
similarity(new, case 2) = \frac{1}{20} \times [6 \times 0.8 + 1 \times 0.8 + 1 \times 0.4 + 6 \times 0.95 + 6 \times 0] = 0.585
\]

Case 1 is more similar: due to feature “State of lights”

Solution
- Diagnosis: Bulb defect
- Repair: Replace front light

Reuse the Solution of Case 1

Problem (Symptom): 1
- Prob.: Break light doesn’t work
- Car: Audi 80
- Year: 1989
- Battery voltage: 12.6 V
- State of break light: OK

Problem (Symptoms):
- Front light doesn’t work
- ...

Solution:
- Diagnosis: Front light fuse defect
- Repair: Replace front light fuse

Adapt Solution:
How do differences in the problem affect the solution?

New Solution:
- Diagnosis: Break light fuse defect
- Repair: Replace break light fuse
Store the New Experience

If diagnosis is correct:
store new case in the memory.

<table>
<thead>
<tr>
<th>CASE</th>
<th>Problem (Symptoms):</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>• Problem: Break light doesn’t work</td>
</tr>
<tr>
<td></td>
<td>• Car: Audi 80</td>
</tr>
<tr>
<td></td>
<td>• Year: 1989</td>
</tr>
<tr>
<td></td>
<td>• Battery voltage: 12.6 V</td>
</tr>
<tr>
<td></td>
<td>• State of break lights: OK</td>
</tr>
<tr>
<td></td>
<td>• light switch clicking: OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diagnosis: break light fuse defect</td>
</tr>
<tr>
<td>• Repair: replace break light fuse</td>
</tr>
</tbody>
</table>

CBR Cycle
(Aamodt & Plaza, 1994, AI Communications)
Representing Cases

- Many different case representations are used:
 - Depend on requirements of domain and task
 - Structure of already available case data
- Flat feature-value list
 - Simple case structure is sometimes sufficient for problem solving
 - Easy to store and retrieve in a CBR system
- Object-oriented representations
 - Case: collection of objects (instances of classes) in the sense of OO
 - Required for complex and structured objects
- For special tasks:
 - Graph representations: case = set of nodes and arcs
 - Plans: case = (partially) ordered set of actions
 - Predicate logic: case = set of atomic formulas

Object-Oriented Case Representations

- A case consists of a set of objects
- An object represents a closed part of the situation
- Objects described by a set of features
- Relations between objects (e.g. part-of)
- Each object belongs to an object-class.
- Object-classes are organized in a inheritance hierarchy.
- Case representation language CASUEL (developed in INRECA)
Retrieve: What is Similarity?

• Purpose of similarity:
 – Select cases that can be adapted easily to the current problem
 – Select cases that have (nearly) the same solution than the current problem

• Basic assumption: similar problems have similar solutions

• Degree of similarity = utility / reusability of solution

• Similarity is an *a-priori approximation* of utility / reusability

• Goal of similarity modeling: provide a *good* approximation
 – close to real reusability
 – easy to compute

Retrieve: Modeling Similarity

• **Different approaches depending on case representation**

• **Similarity measures:**
 – Function to compare two cases $sim: Case \times Case \rightarrow [0..1]$
 – Local similarity measure: similarity on feature level
 – Global similarity measure: similarity on case or object level
 • combines local similarity measures
 • takes care of different importance of attributes (weights)

• **(Sub-)Graph isomorphism for graph representations**

• Logical inferences
Retrieve, but Efficiently ...

- Efficient case retrieval is essential for large case bases
- Different approaches depending
 - on the case representation
 - size of the case base
- Organization of the case base:
 - Linear lists, only for small case bases
 - Index structures for large case bases
 • Kd-trees: index structure for large case bases (Wess)
 • Retrieval nets: index structure for textual CBR (Lenz)
 • Discrimination nets: used with representations in logic
 • ...
- How to store cases:
 - Databases: for large case bases or if shared with other applications
 - Main memory: for small case bases, not shared

Reuse: How to Adapt the Solution
- Different Options -

- No modification of the solution: just copy
- Manual/interactive solution adaptation by the user
- Automatic solution adaptation
 - Transformational Analogy: transformation of the solution
 • Rules or operators to adjust solution w.r.t. differences in the problems
 • Knowledge required about the impact of differences
 - Derivational Analogy: replay of the problem solving trace
 • Complete generative problem solver
 • Knowledge required about how to solve the problem in principle
 - Compositional adaptation: combine several cases to a single solution
Revise: Verify and Correct Solution

- **Revise phase:** *little attention in CBR research today*
 - No revise phase
 - Verification of the solution by computer simulation
 - Verification / evaluation of the solution in the real world

- **Criteria for revision**
 - Correctness of the solution
 - Quality of the solution
 - Other, e.g., user preferences

Retain: Learning from Problem Solving

- **What can be learned:**
 - New experience (new case)
 - Improved similarity assessment, importance of features
 - Organization/indexing of the case base to improve efficiency
 - Knowledge for solution adaptation
 - Forgetting cases, e.g., for efficiency or because out-of-date

- **Methods**
 - Storing cases in the case base
 - Deleting cases from the case base
 - Explanation-based learning
 - Induction, e.g. of decision trees
 - Neural net style learning
Where does a CRR System Store Knowledge?

- CBR systems store knowledge in four different knowledge containers (Richter, 1995):
 - Vocabulary (used features)
 - Case base
 - Similarity assessment
 - Solution adaptation

- Advantage of CBR
 - High flexibility:
 - knowledge can be distributed between the four containers according to application needs
 - in principle, every container can hold the whole knowledge
 - Focus on knowledge in the case base
 - Knowledge in the case base can be updated and maintained very easily

Advantages of CBR over other Techniques

- Reduces the knowledge acquisition effort
- Requires less maintenance effort
- Improve problem solving performance through reuse
- Makes use of existing data, e.g. in databases
- Improve over time and adapt to changes in the environment
- High user acceptance
Avoid (Partially) Knowledge Acquisition Effort

Traditional Knowledge-Based Systems

- Require less general knowledge
- Most knowledge in case base
- Case knowledge is easier to acquire (sometimes already available)

CBR Systems

- Acquisition of general knowledge is very difficult !!

Less Effort Required for Maintenance

What is the impact of changes of the environment?

- Rule bases or models are difficult to maintain
 - Many dependencies between rules
 - Rules of KBS often difficult to understand for non AI experts
 - Effects of changes of the rule base are hard to predict
 - Maintenance by the domain expert impossible !!

- Case bases are easier to maintain
 - Cases are independent from each other
 - Domain experts and novices understand cases quite easy
 - Maintenance of the CBR system (partially) by adding/deleting cases
 - However, changes in the vocabulary container require (little) more effort
CBR for Analytic Tasks
- Classification, Diagnosis, Decision Support -

- **Analytic tasks: Focus on analyzing a situation**
 - Classification of the situation always involved
 - Often: fixed number of classes
 - Additional steps may be required: e.g., test selection strategy

- **Characteristics of CBR systems for analytical tasks**
 - Typical case structure: case = < problem, class >
 - Focus on case retrieval
 - Solution adaptation usually not required

- **Examples**
 - Classification of biological objects (e.g. marine sponges)
 - HOMER (HOTline MIT ERfahrung)
 - Electronic Commerce applications involving product selection

CBR for Synthetic Tasks
- Planning, Configuration, Design -

- **Synthetic Tasks: Synthesizing a new solution**
 - Compose a solution from different components
 - Problem = description of requirements
 - Usually infinite (or at least very large) solution space

- **Characteristics of CBR systems for synthetic tasks**
 - Typical case structure: < problem,solution > or < problem,solution-trace>
 - Typically, solution adaptation is mandatory
 - Much general knowledge required in addition to the cases
 - Cases often used to improve the performance

- **Examples**
 - Manufacturing planning, transportation planning, etc.
 - Electronic Commerce applications involving product configuration
 - Architectural design (FABEL)
Summary

• CBR is a technique for solving problems based on experience

• CBR problem solving involves four phases:
 Retrieval, Reuse, Revise, Retain

• CBR systems store knowledge in four containers:
 Vocabulary, Case Base, Similarity Assessment, Solution Adaptation

• Different techniques for:
 – representing the knowledge, in particular, the cases
 – realizing the four phases

• CBR has several advantages over traditional KBS

 Applications of CBR for analytic and synthetic tasks