TRIPLE—An RDF Query, Inference,
and Transformation Language

Michael Sintek
DFKI GmbH
Kaiserslautern
sintek@dfki.de

Abstract

This paper presents TRIPLE, a layered and modular
rule language for the semantic web [1]. TRIPLE is based
on Horn logic and borrows many basic features from
F-Logic [9] but is especially designed for querying and
transforming RDF models [17].

TRIPLE can be viewed as a successor of SiLRI (Sim-
ple Logic-based RDF Interpreter [5]). One of the most
important differences to F-Logic and SiLRI is that
TRIPLE does not have a fixed semantics for object-
oriented features like classes and inheritance. Its lay-
ered architecture allows such features to be easily de-
fined for different object-oriented and other RDF exten-
sions like RDF Schema [16]. Description logics exten-
sions of RDF (Schema) like OIL [14] and DAML+OIL
[3] that cannot be handled directly by Horn logic are
provided as modules that interact with a description
logic classifier, e.g. FaCT [8], resulting in a hybrid rule
language. This paper sketches syntax and semantics of
TRIPLE.

Keywords: Semantic Web, RDF, DAML, Logic Pro-
gramming, F-Logic

1 Introduction

TRIPLE is a layered rule language. aiming to support
applications in need of RDF reasoning and transforma-
tion. The core language is based on Horn logic which is
syntactically extended to support RDF primitives like
namespaces, resources, and statements (triples, which
gave TRIPLE its name). This core language can be com-
piled into Horn logic programs and enacted by Prolog
systems like XSB [15].

Inference systems for higher level-languages like RDF
Schema and DAML4OIL can either be implemented di-
rectly in TRIPLE or are provided as modules interacting
with external reasoning components.

TRIPLE provides a (human readable) Prolog-like syn-
tax (both in mathematical and ASCII notation; cf. ap-
pendix A) as well as an RDF-based syntax.

This work was supported by the German Ministry for Educa-
tion and Research, bmb+f (Grant: 01 IW 901, Project FRODO:
A Framework for Distributed Organizational Memories).

Stefan Decker
Stanford University
Database Group

stefan@db.stanford.edu

In this section we introduce TRIPLE (using its math-
ematical Prolog-like notation). Section 2 presents the
layered architecture of TRIPLE, Section 3 introduces
its RDF-based syntax (for the subset TRIPLEp). and
Section 4 gives a semantic characterization. Section 5
finally concludes the paper.

The reader is supposed to be familiar with RDF and
RDF Schema.

1.1 Features of TRIPLE

Tn the following, the main features of TRIPLE (i.e..
those extending Horn logic) are informally described.
Note that not all the features are available in TRIPLE,
(cf. Section 2).

Namespaces and Resources TRIPLE has spe-
cial support for namespaces and resource identifiers.
Namespaces are declared via clause-like constructs of
the form nsabbrev := namespace., e.g.

rdf := "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#".

Resources are written as nsabbrev:name, where
nsabbrev is a namespace abbreviation and name is the
local name of the resource.

Resource abbreviations can be introduced analo-
gously to namespace abbreviations, e.g.

isa := rdfs:subClassOf.

Statements and Molecules An RDF statement
(triple} is—inspired by F-Logic object syntax—written
as

subject|predicate — object

Several statements with the same subject can be ab-
breviated as “molecules”:

stefan[hasAge — 33;isMarried — yes; ..]
RDF statements (and molecules) can be nested, eg.:

stefan[marriedTo — birgit[hasAge — 32]

Models RDF models. i.e., sets of statements. are
made explicit in TRIPLE (“first class citizens”).! State-
ments. molecules, and also Horn atoms that are true in
a specific model are written as atom@model (similar
to Flora-2 module syntax), where atom is a statement,
molecule, or Horn atom and model is a model specifi-
cation (i.e., a resource denoting a model), e.g.

michael[hasAge — 34]@factsAboutDFKI

TRIPLE alsa allows Skolem functions as model spec-
ifications. Skolem functions can be used to transform
one model (or several models) into a new one when used
in rules (e.g.. for ontology mapping/integration):

O[P — Ql@sf(ml, XY} +«— ...

If all (or many) statements/molecules or Horn atoms
in a formula (see Section 1.1) are from one model, the
following abbreviation can be used: formula@model.
All statements/molecules and Horn atoms in formula
without an explicit model specification are implicitly
suffixed with @model.

Instead of constants. variables, and Skolem func-
tions also boolean combinations can be used, eg.
(model; ™ modely) specifying the intersection of two
models, (model; L modely, specifying the union of
two models, and (model;\modely) specifying the set-
difference of two models.

Reified Statements Reified statements are written
as < statement > and can be used inside other state-
ments. allowing “modal” statements like

stefan[believes —<OrafisAuthorOf — homepage] >

Path Expressions For navigation purposes. path
expressions have proven to be very useful in object
oriented languages. TRIPLE allows the usage of path
expressions instead of subject. predicate, or object def-
initions (and at all other places where terms are al-
lowed). Path expressions are dot-delimited sequences
of resources, e.g.:

stefan.spouse.mother

denotes Stefan’s mother in law.

Logical Formulae TRIPLE uses the usual set of con-
nectives and quantifiers for building formulae from
statements/molecules and Horn atoms, i.e., A, V, —,
Y, 3, etc.? All variables must be introduced via quan-
tifiers, therefore marking them is not necessary (i.e.,
TRIPLE does not require variables to start with an up-
percase letter as in Prolog).

INote that the notion of model in RDF does not coincide with
its use in (mathematical, logics.

2For TRIPLE programs in plain ASCII syntax. the symbols
AND. OR. NOT, FORALL, EXISTS. <-, ->, etc. are used: cf.
the example in Section 2.1.

Clauses and Blocks A TRIPLE clause is either a
fact or a rule. Rule heads may only contain conjunc-
tions of molecules and Horn atoms and must not con-
tain (explicitly or implicitly) any disjunctive or negated
expressions.

To assert that a set of clauses is true in a specific
model, a model block i used:

@model {clauses}
or, in case the model specification is parameterized:

YV Mdl @model(Mdl) {clauses}

1.2 Example: Dublin Core Metadata

The Dublin Core Metadata Initiative [4] defines a set
of elements for marking up documents with metadata
like title, creator. date, subject, etc. An encoding of
Dublin Core metadata in RDF is straightforward. The
example in Figure 1 adds some simple metadata to a
document and defines a (Horn} rule that searches for
documents with a specified subject.®

rdf := "http://www.w3.org/...rdf-syntax-ns#".
dc := "http://purl.org/dc/elements/1.0/".
dfki := "http://www.dfki.de/".

@dfki:documents {

dfki:d_01.01]
dc:title — "TRIPLE":
de:creator — " Michael Sintek”;
dc:creator — " Stefan Decker”:
dc:subject — RDF;
dc:subject — triples;. ..].

vV S,D search(S,D) +—
Dldc:subject — 5.

Figure 1: Example: Dublin Core Metadata

2 The TRIPLE Layered Architecture

As already mentioned. TRIPLE is a layered rule lan-
guage. Two different kinds of layers are supported:

e syntactical extensions of Horn logic to support ba-
sic RDF constructs like resources and statements

e modules for semantic extensions of RDF like RDF
Schema, OIL, and DAML+OIL, implemented ei-
ther directly in TRIPLE or via interaction with ex-
ternal reasoning components

3Note that symbols in TRIPLE can be enclosed in single or
double quotes; if a symbol does not contain special characters
and starts with a letter. nc quotes are needed. Thus, TRIPLE;
"TRIPLE’, and "TRIPLE" all denote the same symbol.

TRIPLE is the extension of Horn logic as de-
scribed in Section 1.1. TRIPLEy; is the subset
of TRIPLE without quantifiers and negation (and
has already been implemented on top of XSB.
see http://www.dfki.uni-kl.de/frodo/triple/),
TRIPLE; is the subset without quantifiers, but with
negation. TRIPLE; and TRIPLE; mainly exist to
simplify the implementation of the higher layers. For
TRIPLEy. a representation in RDF exists which is
explained in Section 3.

The following two sections describe the modular
extensions for RDF Schema and DAML4OIL, called
TRIPLE/RDFS and TRIPLE/DAML+OIL.

2.1 TRIPLE/RDFS

This section shows how rules axiomatizing (part of the)
semantics of RDF Schema are implemented in TRIPLE.
The rules can be used together with a Horn logic based
inference engine like XSB to derive additional knowl-
edge from an RDF Schema specification.

Figures 2 and 3 show the RDF Schema module in
mathematical and plain ASCII notation.

The first lines define namespaces (for RDF and RDF
Schema} and abbreviations (for type. subPropertyOf
and subClassOf).

The rules are enclosed by a model specification block:
Y Mdl @rdfschema(Mdl) {...}

The Skolem function rdfschema(Mdl) is the model iden-
tifier of all facts derived by the rules enclosed by
the model specification block. The parameter Mdl
denotes the RDF Schema specification. The model
rdfschema(Mdl) contains all statements from the model
Mdl plus everything derived additionally by the rules.
The rule

VO,P,V OP >V «+—
O[P — V]QMdl

specifies that every triple contained in the model
Mdl is also element of the model with the identifier
rdfschema(Mdl). The next rule defines the inheritance
of values from sub properties to super properties. The
remaining rules define the semantics of transitive prop-
erties (subPropertyOf and subClassOf) and of the type

property.

2.2 TRIPLE/DAML+OIL

DAML+OIL [3 (and also OIL [14]) are description log-
ics extensions of RDF Schema that cannot be mapped
to Horn logic directly. For this reason, a model
daml_oil(Mdl) is provided that accesses a description
logics classifier (e.g.. FaCT) to realize the semantics of
DAMLAOIL. Access to the daml_oil(Mdl) model is re-
stricted to premises in rules; facts and rule heads must
not contain any references to it.

rdf := "http://www.w3.org/...rdf-syntax-ns#".

rdfs := "http://www.w3.org/.../PR-rdf-schema-...#".

type := rdf:type.

subPropertyOf := rdfs:subPropertyOf.

subClassOf := rdfs:subClassOf.

YV Mdl Qrdfschema(Mdl) {
transitive(subPropertyOf).
transitive(subClassOf).
VO,PV OP =V «+—

OP = VI@Mdl
YO,P,V O[P 5V +—

35 S[subPropertyOf — P] A O[S = V].
VO,P,V OP—=V] +

transitive(P) A

IW (OP=-W] A WIP—=>V]).
VO, T Oftype 5 T] +—

35 (S[subClassOf - T] A Olftype = S)).

Figure 2: RDF Schema in TRIPLE

rdf := ’http://www.w3.org/...rdf-syntax-ns#’.
rdfs := ’http://www.w3.org/.../PR-rdf-schema-...#’.
type := rdf:type.
subProperty0f := rdfs:subProperty0f.
subClass0f := rdfs:subClassOf.
FORALL Mdl @rdfschema(Mdl) {
transitive (subProperty0f) .
transitive (subClass0f).
FORALL O,P,V o[pP->v] <-
0[P->V]eMdl.
FORALL O0,P,V o[pP->v] <-
EXISTS S S[subPropertyOf->P] ANC 0[S->V].
FORALL O,P,V o[pP->v] <-
transitive (P) AND
EXISTS W (D[P->W] AND W[P->V]).
FORALL 0,T O[type->T] <-
EXISTS S (S[subClass0f->T. AND O[type->S]).

Figure 3: RDF Schema in TRIPLE, plain ASCII syntax

The resulting rule language is a hybrid rule language
amalgamating Horn rules and description logics similar
to Carin [10]. The main difference is that Carin’s pri-
mary goal is to remain complete and correct. This is
achieved by restricting the Horn part to function-free,
recursive rules and by either restricting the descrip-
tion logics part by removing the constructors VR.C and
(< n R} or by further restricting the Horn rules to be
role-safe (i.e.. by restricting the way in which variables
can appear in role atoms in the rules, similar to safety
conditions on Datalog KBs).

In TRIPLE/DAML+OIL, neither the Horn rules nor
the description logics part are restricted in any way.
resulting in an incomplete language. But since Prolog
implementations for Horn logic are already incomplete.

this does not make things worse. The resulting lan-
guage is, on the other hand. quite powerful and meets
the pragmatic requirements of a rule and transforma-
tion language for the semantic web.

Tn the DAMLA4OIL example in Figure 4,
Herbivore and Carnivore are (incorrectly) de-
fined to be disjoint, therefore the class Omni-
vore is unsatisfiable which will be revealed by
the query wunsatisfiable(animals:Omnivore) @
check(animals:ontology).

daml := ’http://www.daml.org/.../daml+oil#’.
animals := ’http://www.example.org/animals#’.
@animals:ontology {
animals:Animal[rdf:type -> daml:Class].
animals:Herbivore[rdf:type -> daml:Class;
daml:subClass0f -> animals:Animal].
animals:Carnivore[rdf:type -> daml:Class;
rdfs:subClass0f -> animals:Animal;
daml:disjointWith -> animals:Herbivore].
animals:Omnivore[rdf:type -> daml:Class;
rdfs:subClass0f -> animals:Herbivore;
rdfs:subClass0f -> animals:Carnivore].
b
FORALL Ont @check{(Ont) {
FORALL C unsatisfiable(C) <-
C[daml:subClassOf ->
daml :Nothing]@daml_oil{(0Ont).

Figure 4: Animals Example for TRIPLE/DAML+OIL

3 TRIPLEy in RDF

In this section, we describe how to represent TRIPLEg in
RDF. Appendix B contains the RDF Schema definition
for TRIPLE;.

Representing a rule language like TRIPLE in RDF (or
XML) allows rules to be distributed on the Web, e.g.
between communicating agents, which is the primary
goal of the RuleML initiative [2].

A possible scenario could be similar to that of mo-
bile agents, e.g.: a customer intending to purchase some
goods formulates his interests/preferences etc. as a set
of TRIPLE rules and facts, sends them (encoded in
RDF) to some vendors who enact them on their local
knowledge bases (after transformation into their own
rule languages), and then send the results back to the
buyer.

Namespace for TRIPLE in RDF In the following.
‘triple’ denotes the TRIPLE namespace (something like
‘http:/ /www.semanticweb.org/2001/06/30/triple#t’).

Abbreviations Abbreviations for namespaces and
resources are not necessary: we simply use the XML
namegpace and entity declarations.

Triples, Molecules, Path Expressions a[b — ¢]
becomes an instance of triple:Triple which is a subclass
of rdf:Statement:

<triple:Triple>
<triple:subject rdf:resource="#a'"/>
<triple:predicate rdf:resource="#b"/>
<triple:object rdf:resource="#c"/>
</triple:Triple>

There is no need for an RDF representation of
molecules like a[b — ¢;p — q;. ..] since they are equiv-
alent to the conjunction of single Triples. The same
holds for path expressions (which can be split into sep-
arate Triples).

Associated Models, Model Expressions Every
Triple can have an associated model: a[b — c]@m be-
comes

<triple:Triple>
<triple:subject rdf:resource="#a"/>
<triple:predicate rdf:resource="#b"/>
<triple:object rdf:resource="#c"/>
<triple:model rdf:resource="#m"/>
</triple:Triple>

Note that triple:model is a property that may be used
on all formulas and clauses, not only on Triples (see
the section on @-Expressions below). Any term can
be used as a model: complex model expressions can be
built with triple:ModelUnion, triple:Modellntersection
etc., e.g.:

<triple:ModelUnion>
<triple:firstModel rdf:resource="#m"/>
<triple:secondModel rdf:resource="#n"/>
</triple:ModelUnion>

Furthermore, a triple model may be denoted by
a Skolem function to allow parameterized models
{triple:SkolemModel).

rdfs:Literal.
triple:Resource,

Terms triple:Term comprises
triple:Variable, triple:Structure,
triple:Reified Triple, triple:Model etc.

Atoms and Formulas We have two sorts of Atoms:
triple:Triple and triple:HornAtom, where HornAtoms
are the normal Horn atoms like p(a,X).

Since we do not support Lloyd-Topor transforma-
tions in TRIPLEy, Atom and And/Or formulas are the
only formulas.

A:N —

OP -V —

SeM —

<5> —

OlP 5 V1; P, = Vs JOM —
true(S, My N Ms) —

true(S, Mi\Mz) —

X =Y. 5X) —

resource(A, N
statement (O, P, V)
true(S, M)
S for statements S
O[p —» V1]QM A

O[P; > Va]aM A ...
true(S, M1) A true(S, Ms)
true(S, M1) A — true(S, Ms)
VX (X=Y A S(X))

for clause sequences S(X)

for statements (and atoms} S

[N

N

N AN N N S
ot wo
R N

—~
(=]
~—

Figure 5: The RDF-specific Rewrite Rules

Clauses A triple:Clause simply consists of a head
(with range triple:Atom) and a body (with range
triple:Formula). both of which may be empty to form
facts and queries. It may also have an associated model
(see below).

@-Expressions All forms of @-expressions are
mapped to usages of the triple:model property, even
for the { } enclosed blocks, e.g.

@someModel {
clausel.
clause?2.

becomes

<triple:Clause rdf:ID"clausel">
<triple:model rdf:resource="#someModel"/>
</triple:Clause>

<triple:Clause rdf:ID"clause2">
<triple:model rdf:resource="#someModel"/>
</triple:Clause>

4 Semantic Characterization of TRIPLE

This section provides a first indirect semantic character-
ization of TRIPLE by defining a mapping to Horn Logic.
This allows TRIPLE ta be implemented on top of XSB
(i.e.. Prolog with tabled resolution). analogously to the
F-Logic Flora [12].

Figure 5 shows the rewrite rules for mapping RDF-
specific features like resources and statements. All
other mappings are well-known (Lloyd-Topor transfor-
mations for handling of quantifier [11]) or straightfor-
ward (see the SiLRI system [5]). Example:

p:jdow[p:lastname — doe]@ml. —
true(statement (resource(p, jdow),
lastname), doe), ml).

resource(p,

In a future document, a model-theoretic semantics
based on minimal Herbrand models and fix-point oper-
ators will be provided.

5 Conclusion

In this paper, we presented TRIPLE, a novel query and
transformation language for RDF. Its core is a syntacti-
cal extension of Horn logic similar to F-Logic, but spe-
cialized for the requirements on the semantic web by
making web resources, (RDF) models. and statements
first class citizens.

Its main purpose is to query web resources in a
declarative way, e.g. for intelligent information retrieval
based on background knowledge like ontologies and
search heuristics. For early approaches in this area,
refer to, e.g., [7, 6, 13].

TRIPLE’s layered architecture allows extensions of
RDF to be implemented as extension modules (via pa-
rameterized models). Simple object-oriented extensions
like RDF Schema can be directly implemented with the
extended Horn logic features of TRIPLE, other exten-
sions like DAML+OIL are realized via interaction with
external reasoning componentg like a description logics
classifier.

TRIPLE’s model concept (esp. the parameter-
ized models) enables the transformation of models,
thus enabling knowledge base and ontology map-
ping/integration tasks which are needed in distributed
settings as the semantic web (see, e.g., [18]).

Since models are first class citizens in TRIPLE, modal
functionalities as needed in agent communication are
also provided (e.g.. agent A “believes” statements in

model M, which has been received from agent B, to be
true).

TRIPLE is currently being developed by
the authors. A first implementation of
TRIPLE; based on XSB is available at:
http://wuw.dfki.uni-kl.de/frodo/triple/. In
this version, all RDF data and TRIPLE rules are
compiled into a single PROLOG program, therefore
restricting the size of the knowledge base to what the
underlying PROLOG system (i.e., XSB) can handle.

Future versions will implement the complete TRIPLE
language and allow querying distributed RDF data
without compiling remote data to the local (PROLOG)
knowledge base.

References

[1] Tim Berners-Lee. Weaving the Web: The Orig-
inal Design and Ultimate Destiny of the World
Wide Web by Its Inventor. Harper San Francisco,
September 1999.

2]

Harold Boley, Said Tabet, and Gerd Wagner. De-
sign Rationale of RuleML: A Markup Language
for Semantic Web Rules. In Infernational Seman-

tic Web Working Symposium (SWWS). 2001.

[3] DAML Joint Committee. DAML+OIL,
2001. URL: http://www.daml.org/2001/03/
daml+oil-index.html.

[4] DCMI. Dublin Core Metadata Initiative, 2001.
URL: http://purl.org/dc/.

[5] Stefan Decker, Dan Brickley, Janne Saarela, and
Jurgen Angele. A query and inference service for
RDF. In QL’98 — The Query Languages Work-
shop. Boston, USA, 1998. WorldWideWeb Consor-
tium (W3C).

Stefan Decker. Michael Erdmann, Dieter Fensel.
and Rudi Studer. Ontobroker: Ontology Based
Access to Distributed and Semi-Structured Infor-
mation. Tn R. Meersman et al.. editor. Semantic

Issues in Multimedia Systems. Kluwer Academic
Publisher. 1999.

[6]

[7] Dieter Fensel. Stefan Decker. Michael Erdmann,
and Rudi Studer. Ontobroker: The Very High
Idea. In Proc. 11th Int. Florida AI Research Sym-
posium (FLAIRS-98), May 1998.

8]

Tan Horrocks. The FaCT System, 2001. URL:
http://www.cs.man.ac.uk/~horrocks/FaCT/.

[9]

M. Kifer, G. Lausen, and J. Wu. Logical foun-
dations of object-oriented and frame-based lan-
guages. Journal of the ACM. 42:741-843. July
1995.

[10] Alon Y. Levy and Marie-Christine Rousset.
CARIN: A Representation Language Combining
Horn Rules and Description Logics. Tn 12th Furo-
pean Conference on Artificial Intelligence. 1996.

[11] J'W. Lloyd and R.W. Topor. Making Prolog more
Expressive. Journal of Logic Programming, 3:225—
240, 1984.

[12] B. Ludéscher, Guizhen Yang, and Michael Kifer.
FLORA: The secret of object-oriented logic pro-
gramming. Technical report, SUNY at Stony
Brook, 1999.

[13] Sean Luke, Lee Spector, David Rager. and .Jim
Hendler. Ontology-based Web Agents. Tn Pro-
ceedings of First International Conference on Au-
tonomous Agents (AA-97), 1997.

[14] OIL. Ontology Inference Layer, 2001. TURL:
http://www.ontoknowledge.org/oil/.

[15] SUNY. The XSB Programming System. Dept. of
Computer Science, SUNY at Stony Brook, 2000.
URL: http://www.cs.sunysb.edu/~sbprolog/
xsb-page.html.

[16] W3C. Resource Description Frame-
work (RDF) Schema Specification 1.0,
2001. URL: http://www.w3.o0rg/TR/2000/
CR-rdf-schema-20000327/.

[17] W3C. Semantic Web Activity: Resource

Description Framework (RDF), 2001. URL:
http://www.w3.org/RDF/.

[18] Gio Wiederhold, editor. Intelligent Integration of
Information. Kluwer Academic Publishers, July
1996.

A BNF for TRIPLE

The following BNF for TRIPLE was automatically generated with the jjdoc tool which is part of SUN’s JavaCC
compiler generator.

Program::= (ClauseSeq <EQOF>)
ClauseBlock::= (((ForallQuantifier)7 <AT> StructTerm)7 SimpleClauseBlock)
SimpleClauseBlock::= ("{" ClauseSeq "}")
ClauseSeq::= (Clause (ClauseSeq)7)
Clause::= (ClauseBlock | ((ForallQuantifier)7 Term <E0C>)
ForallQuantifier::= (<FORALL> IdTermSeq)

Term::= Opl1200Term
0p1200Term::= (((Unopl1200)7 Op1100Term) (Binop1200 0p1200Term)7)
Op1100Term::= (Op1000Term (Binop1100 Op1100Term)7)
Op1000Term::= (Op900Term (Binop1000 Op1000Term)7)
0p900Term: := ((Unop900 0p900Term)} | (Quantop300 IdTermSeq
0p900Term } | Binop900Term)

Binop900Term::= (Op700Term (Binop300 Binop900Term)7)
Op700Term: := (0p680Term (Binop700 Op700Term)7)
O0p680Term: := (Op661Term (Binop680 0p680Term)7)
Op661Term::= (Op500Term (Binop661 0p661Term)7)
0p500Term::= (((Unop50C)7 0p400Term)} (Binop500 Op500Term)7)
0p400Term: := (StructTerm (Binop400 Op400Term)7)
StructTerm: := (UnitTerm (ArgList | SBArgList)*)}
UnitTerm::= (IdTerm | Integer | "(" Term ")" | "<" Term ">" |
SimpleClauseBlock)
IdTerm::= ((Variable | Symbol } (<COLON> IdTerm)7)
Variable::= ("?" <SYMBOL>)
Symbol::= (<SYMBOL> | <Q_SYMBOL> | <DQ_SYMBOL>)
Integer::= (<INTEGER_LITERAL>)
Arglist::= ("(" TermSeq ")")
SBArgList::= ("[" TermSeq "1")
TermSeq::= (0p900Term ((<COMMA> | <SEMICOLON>)} 0p900Term)*)
IdTermSeq::= (IdTerm (<COMMA> IdTerm)*)
Unop1200::= (<IMPLIEDBY>)
Binop1200::= (<IMPLIEDBY> | <EQUIV> | <ASSIGN>)
Binop1100::= (<SEMICOLON> | <OR>)
Binop1000::= (<COMMA> | <AND>)
Quantop900::= (<FORALL> | <EXISTS>)
Unop900::= (<NOT> | <NEG>)
Binop900::= (<IMPLIES> }
Binop700::= (<EQUALS> | <IS>)
Binop680::= (<AT>)
Binop661::= (<DOT>)
Unop500::= (<PLUS> | <MINUS>)
Binop500::= (<PLUS> | <MINUS>)
(

Binop400::= <TIMES> | <BY> | <INTERSECT> | <UNION> | <DIFF> }

B RDF Schema for TRIPLE,

<?xml version=’1.0’ encoding=’IS50-8859-1’7>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’>

<!ENTITY triple ’http://www.semanticweb.org/2001/06/30/triple#’> 1>
<rdf:RDF xmlns:rdf="&rdf;" xmlns:rdfs="&rdfs;"
xmlns:triple="&triple;" xmlns="&triple;">

<rdfs:Class rdf:ID="Triple">
<rdfs:subClass0f rdf:resource="&rdf;Statement"/>
<rdfs:subClass0f rdf:resource="&triple;Atom"/>
</rdfs:Class>

<rdf:Property rdf:ID="subject">
<rdfs:subProperty0f rdf:resource="&rdf;subject"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>
</rdf:Property>

<rdf:Property rdf:ID="predicate">
<rdfs:subProperty0f rdf:resource="§rdf;predicate"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>
</rdf:Property>

<rdf:Property rdf:ID="object">
<rdfs:subProperty0f rdf:resource="&rdf;object"/>
<rdfs:domain rdf:resource="&triple;Triple"/>
<rdfs:range rdf:resource="&triple;Term"/>
</rdf:Property>

<rdfs:Class rdf:ID="Model">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</rdfs:Class>

<rdfs:Class rdf:ID="SimpellModel">
<rdfs:subClass0f rdf:resource="&triple;Model"/>
</rdfs:Class>

<rdfs:Class rdf:ID="SkolemModel">
<rdfs:subClass0f rdf:resource="g&triple;Model"/>
</rdfs:Class>

<rdf:Property rdf:ID="skolemFunction'>
<rdfs:domain rdf:resource="&triple;SkolemModel/>
<rdfs:range rdf:resource="&triple;Structure"/>
</rdf:Property>

<rdfs:Class rdf:ID="BinaryModelExpression">
<rdfs:subClass0f rdf:resource="g&triple;Model"/>
</rdfs:Class>

<rdf:Property rdf:ID="firstModel">
<rdfs:domain rdf:resource="&triple;BinaryModelExpression"/>

<rdfs:range rdf:resource="&triple;Model"/> <!-- Term 7 -->
</rdf:Property>

<rdf:Property rdf:ID="secondModel">
<rdfs:domain rdf:resource="&triple;BinaryModelExpression"/>

<rdfs:range rdf:resource="&triple;Model"/>
</rdf:Property>

<rdfs:Class rdf:ID="ModelIntersection">
<rdfs:subClass0f rdf:resource="&triple;BinaryModelExpression"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Term"/>

<rdfs:Class rdf:ID="Variable">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</rdfs:Class>

<Description rdf:about="&rdfs;Literal">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</Description>

<rdfs:Class rdf:ID="Resource">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</rdfs:Class>

<rdfs:Class rdf:ID="ReifiedTriple">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</rdfs:Class>

<rdf:Property rdf:ID="triple">
<rdfs:domain rdf:resource="&triple;ReifiedTriple"/>
<rdfs:range rdf:resource="&triple;Triple"/>
</rdf:Property>

<rdfs:Class rdf:ID="Structure">
<rdfs:subClass0f rdf:resource="&triple;Term"/>
</rdfs:Class>

<rdf:Property rdf:ID="functor">
<rdfs:domain rdf:resource="&triple;Structure"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf:Property>

<rdf:Property rdf:ID="args">
<rdfs:domain rdf:resource="&triple;Structure"/>
<rdfs:range rdf:resource="&triple;TermSeq"/>
</rdf:Property>

<rdfs:Class rdf:ID="TermSeq">
<rdfs:subClass0f rdf:resource="&rdf;Seq"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Formula"/>

<rdf:Property rdf:ID="model'>
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:domain rdf:resource="&triple;Formula"/>
<rdfs:range rdf:resource="&triple;Term"/>
</rdf:Property>

<rdfs:Class rdf:ID="BinaryFormula">
<rdfs:subClass0f rdf:resource="&triple;Formula"/>
</rdfs:Class>

<rdf:Property rdf:ID="firstFormula">
<rdfs:domain rdf:resource="&triple;BinaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>
</rdf:Property>

<rdf:Property rdf:ID="secondFormula">
<rdfs:domain rdf:resource="&triple;BinaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>
</rdf:Property>

<rdfs:Class rdf:ID="And">
<rdfs:subClass0f rdf:resource="&triple;BinaryFormula"/>
</rdfs:Class>

<rdfs:Class rdf:ID="0r">
<rdfs:subClass0f rdf:resource="&triple;BinaryFormula"/>
</rdfs:Class>

<rdfs:Class rdf:ID="UnaryFormula'>
<rdfs:subClass0f rdf:resource="&triple;Formula"/>
</rdfs:Class>

<rdf:Property rdf:ID="formula">
<rdfs:domain rdf:resource="&triple;UnaryFormula"/>
<rdfs:range rdf:resource="&triple;Formula"/>
</rdf:Property>

<rdfs:Class rdf:ID="Atom">
<rdfs:subClass0f rdf:resource="&triple;Formula"/>
</rdfs:Class>

<rdfs:Class rdf:ID="HornAtom">
<rdfs:subClass0f rdf:resource="&triple;Atom"/>
</rdfs:Class>

<rdf:Property rdf:ID="predicateSymbol">
<rdfs:domain rdf:resource="&triple;HornAtom"/>
<rdfs:range rdf:resource="&rdfs;Literal"/>
</rdf:Property>

<rdf:Property rdf:about="#args">
<rdfs:domain rdf:resource="&triple;HornAtom"/>
</rdf:Property>

<rdfs:Class rdf:ID="Clause"/>

<rdf:Property rdf:ID="head">
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:range rdf:resource="&triple;Atom"/>
</rdf:Property>

<rdf:Property rdf:ID="body">
<rdfs:domain rdf:resource="&triple;Clause"/>
<rdfs:range rdf:resource="&triple;Formula"/>
</rdf:Property>

</rdf :RDF>

