TRIPLE—An RDF Query, Inference, and Transformation Language

Michael Sintek
DFKI GmbH
sintek@dfki.de

Stefan Decker
Stanford University Database Group
steфан@db.stanford.edu

DDLP’2001
Tokyo, Japan, October 20–22, 2001

Overview

• Introductions to
 – RDF, RDF Schema
 – DAML

• TRIPLE
 – Motivation
 – Language Description
 – Layered Architecture
 – Realization
 – Conclusion
A Very Short Introduction to RDF (“Resource Description Framework”) I

- (Syntactical) basis of the “semantic web”
- Similar to semi-structured data: graphs (RDF ~ OEM)
- Three basic object types:
 - resources: all things being described; named by URIs
 - properties: attributes to describe a resource
 - statements: subject + predicate + object;
 are all resources (object can also be a literal)
- Example:
 - “the creator of this talk is Michael Sintek”
 - subject: http://www.dfki.uni-kl.de/.../ddlp2001talk.html
 - predicate: http://www.purl.org/dc/.../creator
 - object: “Michael Sintek”

A Very Short Introduction to RDF II

- Representation
 - as graph:
 - serialized in XML (“RDF/XML”):
      ```xml
      <?xml version="1.0"?>
      <rdf:RDF xmlns:dc="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:xsd="http://www.w3.org/2001/XMLSchema-instance">
        <rdf:Description about="http://.../ddlp2001talk.html">
          <dc:creator>Michael Sintek</dc:creator>
        </rdf:Description>
      </rdf:RDF>
      ```
A Very Short Introduction to RDF Schema

- RDF = simple data model
- RDF Schema allows definition of vocabularies for RDF data
- Simple frame system / ontology language:
 - classes, subclasses, properties, sub-properties, domain, range
- Extension of RDF in RDF
- Example:

![Diagram](image)

A Very Short Introduction to DAML (“DARPA Agent Markup Language”)

- Motivation:
 - support WWW content that is easily used by intelligent agents and other programs
 - enable the Semantic Web
- DAML language (“DAML+OIL”) extension of RDF[S]:
 - description logics:
 - class expressions: union, intersection, complement
 - inverse, transitive, ... properties
 - cardinality constraints
 - support for concrete types (from XML Schema)
 - usually enacted by DL classifier (e.g., FaCT)
TRIPLE: Motivation

• RDF used in various scenarios:
 – meta-data for documents on the web (e.g., in PDF files)
 – distributed knowledge (e.g., ontologies)
 – exchange of complex semi-structured or object-oriented data (e.g., between companies)
 – message content language in agent systems (e.g., FIPA)
• Needed: query and inference language for RDF:
 – intelligent information retrieval (search heuristics etc.)
 – ontology mapping, information integration, ...
• Existing/ongoing approaches:
 – SiLRI, DQL, RQL, N3, Squish, ...

What’s Wrong With Existing Approaches?

• Built-in semantics (e.g. SiLRI, RQL)
 – but: many RDF-based languages with different semantics
 (DAML+OIL, RDF Schema, UML/RDF, …)
• No support for RDF models
 – one large heap of RDF data
TRIPLE: Language Overview

- Native support for
 - Resources & namespaces, abbreviations
 - Models (sets of RDF statements)
 - Reification
 - Rules with expressive bodies (full FOL syntax)
 - Transformations
- Syntactical extension of Horn Logic
- Syntactically similar to F-Logic (and SiLRI):
 - $\text{subject}[\text{predicate} \rightarrow \text{object}]$ ("molecule")

Language Description I

- Namespace and resource abbreviations:
 - rdf := "http://www.w3.org/1999/02/22-rdf-syntax-ns#".
 - isa := rdf:subClassOf.
- Statements, triples, molecules:
 - $\text{subject}[\text{predicate} \rightarrow \text{object}]$
 - $\text{subject}[p_1 \rightarrow o_1; p_2 \rightarrow o_2; ...]$
 - $s_1[p_1 \rightarrow s_2[p_2 \rightarrow o]]$
- Models, model expressions, parameterized models:
 - $s[p \rightarrow o]@m$ "triple <s,p,o> in model m"
 - $s[p \rightarrow o]@(m_1 \cap m_2)$ model intersection
 - $s[p \rightarrow o]@sf(m1, X, Y)$ Skolem function
Language Description II

- **Reification:**
 - stefan[believes \(\rightarrow\) Ora[isAuthorOf\(\rightarrow\)homepage]>]

- **Logical formulae:**
 - usual logical connectives and quantifiers: \(\land \lor \forall \exists\)
 - all variables introduced via \(\forall\) (or \(\exists\))

- **Clauses:**
 - facts: \(s[p_1 \rightarrow o_1; p_2 \rightarrow o_2; ...]\).
 - rules: \(\forall X \ s_1[p_1 \rightarrow X] \leftarrow s_2[p_2 \rightarrow X] \land \ldots\)

- **Blocks:**
 - \(@\ model\ (\ clauses\)\)
 - \(\forall Mdl\ @\ model(Mdl)\ \{\ clauses\ \}\)

Example: Dublin Core

```plaintext
@dfki:documents {
  dfki:d_01_01 [
    dc:title → "TRIPLE";
    dc:creator → "Michael Sintek";
    dc:subject → RDF;
    dc:subject → triples; ... ].
  ∀S,D search(S,D) ← D[dc:subject → S].
}
```

```plaintext
dc := "http://purl.org/dc/elements/1.0/".
dfki := "http://www.dfki.de/".
```

```plaintext
namespace abbreviations
```
```
```
```
```
```
```
```
```
```
```
Layered Architecture

- TRIPLE supports the definition of semantical RDF extensions in a modular way
 - RDF Schema (and other “simple” frame systems):
 semantics can be directly defined in TRIPLE as a parameterized model (see next slide)
 - OIL, DAML+OIL (i.e., expressive ontology languages, DL):
 requires interaction with foreign reasoning components (e.g., DL classifier)
- Goal: use various semantics in one inference (e.g., for information integration)

TRIPLE/RDFS: RDF Schema Model

```
FORALL Mdl @rdfschema(Mdl) {
  transitive(subPropertyOf).
  transitive(subClassOf).
  FORALL O,P,V O[P->V] :<
    O[P->V]@Mdl.
  FORALL O,P,V O[P->V] :<
    EXISTS S S[subPropertyOf->P] AND O[S->V].
  FORALL O,P,V O[P->V] :<
    transitive(P) AND
    EXISTS W (O[W->W] AND W[P->V]).
  FORALL O,T O[type->T] :<
    EXISTS S S[subClassOf->T] AND O[type->S].
}
```
TRIPLE/DAML+OIL

- `daml_oil(Mdl)` model realized by accessing a DL classifier (e.g., FaCT)
- access only allowed in rule bodies
- results in hybrid rule language similar to Carin, but more pragmatic approach: powerful but incomplete

TRIPLE/DAML+OIL Example

```prolog
findall unsatisfiable(C) :-
  (C(daml:subClassOf -> @daml:Nothing)@daml_oil(On)).
```
Realization: Mapping to Horn Logic

- First implementation (and informal semantics) by mapping to Horn Logic / XSB system (Prolog with tabled resolution)
- Lloyd-Topor transformation for quantifiers etc.
- RDF-specific transformations given as rewrite rules:
 \[A : N \rightarrow \text{resource}(A, N) \]
 \[O[P \rightarrow V] \rightarrow \text{statement}(O, P, V) \]
 \[S \@ M \rightarrow \text{true}(S, M) \text{ for statements } S \]
 \[<S> \rightarrow S \text{ for statements } S \]
 \[O[P_1 \rightarrow V_1; P_2 \rightarrow V_2; \ldots] @ M \rightarrow O[P_1 \rightarrow V_1] @ M \land \]
 \[O[P_2 \rightarrow V_2] @ M \land \ldots \]
 \[\text{true}(S, M_1 \cap M_2) \rightarrow \text{true}(S, M_1) \land \text{true}(S, M_2) \]
 \[\text{true}(S, M_1 \setminus M_2) \rightarrow \text{true}(S, M_1) \land \neg \text{true}(S, M_2) \]
 \[X := Y. S(X) \rightarrow \forall X \ (X = Y \land S(X)) \text{ for clause sequences } S(X) \]

Conclusions

- TRIPLE is a new RDF-specific query and inference language
- Allows specification of/access to multiple semantics
- Every Horn Logic inference engine can be used
- First implementation available (for a subset of TRIPLE called TRIPLE\textsubscript{0}):
 http://www.dfkik.uni-kl.de/frodo/triple/
- Representation of TRIPLE\textsubscript{0} in RDF exists
- Part of RuleML initiative:
 http://www.dfkik.uni-kl.de/ruleml/