FRODO
A Framework for Distributed Organizational Memories

Andreas Dengel, Ansgar Bernardi
Andreas Abecker, Ludger van Elst
Markus Junker, Michael Sintek

21st SAB – Spring 2000

Agenda

- Motivation: from KnowMore to FRODO
- FRODO Research questions:
 1 Framework
 2 Ontologies
 3 DAU services for the OM
 4 Methodology for BPOKM
 5 Weak Workflow
- Work plan
KnowMore: A Central OM with Proactive Information Supply

- strongly structured workflows with extensions for knowledge-intensive tasks
- active information supply relies on workflow context information
- information retrieval by reasoning over central ontologies
- access to various information sources via formal knowledge item descriptions

The Networked World Requires a Distributed Approach to Organizational Memories

KnowMore:
- distributed and heterogeneous knowledge sources
- knowledge-intensive, centralized inference
- global set of ontologies
- strong workflow as context

FRODO:
- independently introduced partial OMs with specialized ontologies
- distributed inference
- external knowledge sources with own ontologies
- weak workflow as context

Scaling up leads to a new architectural approach.
The Decentralized OMs are Complemented by Agents for Information Input and Access

- decentralized OMs ask for cooperating information agents
- the agent paradigm facilitates pluggable components for information extraction and text analysis
- wrappers allow access to foreign IT systems, e.g., legacy databases, XML files, ...

Practical Motivations Lead to Challenging Research Questions

- flexible, scalable OM framework for evolutionary growth
- representation and enactment of weakly-structured workflows
- toolkit for construction and maintenance of domain ontologies
- improved information access by developing more integrated/easier adaptable DAU techniques
- methodology and tool for business-process oriented Knowledge Management
The OM Framework Aims at a Sound Integration of Heterogeneous Subsystems

FRAMEWORK APPROACH

• integration of
 – separately developed OM solutions and legacy (DB) systems
 – DAU components
• distributed problem solving
• based on
 – declarative knowledge representation
 – agents / speech acts / protocols
 – Internet-enabled: HTTP, XML, RDF, ...

The Framework Realization is Based on (Upcoming) Internet Standards

XML/RDF AND HTTP

• FIPA-like agents communicate with XML messages
• communication via HTTP
• involved XML technologies:
 – XSLT for message transformation and information extraction
 – RDF for representing meta-information
 – RDF Schema for representing ontologies
 – XML/RDF-based query and transformation languages for distributed inferences
• first prototypical realization of an RDF/RDF Schema query agent (based on an F-Logic implementation for RDF: SiLRI, Karlsruhe / Stanford)
• W3C membership under consideration
Agents Communicate Via XML Messages

<message type="message-type"
sender="sender-url"
receiver="receiver-url"
additional-information >
 contents
</message>

- message types: inform, request, agree, cancel, confirm, disconfirm, subscribe, ... (speech acts, FIPA)
- additional information: reply-with, in-reply-to, language, ontology, reply-by, protocol, ...
- contents: XML “forest”
- cooperation with the DAML initiative (DARPA, Jim Hendler) planned

Message Exchange is Based on Internet Techniques

Servlet-enabled HTTP Server

Servlet

Agent 1

... Agent n

(standard) HTTP Server

CGI 1

... CGI n

Browser

HTML Form

Java Applet

Java Application

C/C++ etc. Application

Servlet

Agent 1

... Agent n

Browser

HTTP
Our Agent Platform Enables a Simple Integration of Foreign Software Components

CONSEQUENCES

- all foreign software components which are designed as CGI programs are immediately usable as agents (no explicit wrappers needed)
- access to agents simple for all software components that have access to a HTTP library (Java, C, C++, ...)

Higher level functionalities will be realized on this technical basis.

A FRODO System Instantiation Combines Heterogeneous Agents

SAMPLE SERVICES
FRODO Aims At an OM Middleware

- higher-level functionalities are realized by collaborative problem-solving, e.g.:
 - cooperative information retrieval
 - knowledge fusion from different sources
 - collaborative filtering by comparison of several user profiles

- collaborative problem solving will be enabled by:
 - specific speech acts & knowledge representation if required
 - protocols / transactions
 - identification of standard agents / agent communities

Ontologies are vital for communication and collaboration.

Research Topic 2: Domain Ontologies

- flexible, scalable OM framework for evolutionary growth
- representation and enactment of weakly-structured workflows
- toolkit for construction and maintenance of domain ontologies
- improved information access by developing more integrated/easier adaptable DAU techniques

methodology and tool for business-process oriented Knowledge Management
Acquisition and Maintenance of Domain Ontologies is Hard

BUILDING DOMAIN ONTOLOGIES

- in *KnowMore*, we sketched semi-automatic ontology acquisition exploiting *statistic* text analysis techniques
- in *FRODO*, we will couple
 - a widespread, state-of-the-art manual ontology modeling tool
 - *symbolic machine learning* for ontology acquisition
 - learning from user interaction

Ontology representation has already been investigated.

Use of RDF Schema Facilitates Ontology Sharing

- **RDF / RDF Schema**
 - future standard (ontologies and tools can be shared/reused)
 - extensible
- **Tool support: Protégé-2000/RDF**
 - close cooperation with Stanford Medical Informatics
 - open source
 - extensible
 - other tools will soon be available

Manual ontology modeling will be supported by automatic knowledge acquisition from texts.
Information Extraction Will be Employed for Ontology Modeling Support

INFORMATION EXTRACTION FOR LEARNING ONTOLOGIES

Research Topic 3: DAU Techniques

flexible, scalable OM framework for evolutionary growth
representation and enactment of weakly-structured workflows
toolkit for construction and maintenance of domain ontologies
improved information access by developing more integrated/easier adaptable DAU techniques

methodology and tool for business-process oriented Knowledge Management
DAU Specialists Provide Essential Services in the OM Scenario

DAU SERVICES AND IMPROVEMENTS

- The overall OM goal is to satisfy users’ situation-specific information needs
- DAU techniques:
 - classify documents with respect to formal ontologies,
 - extract data and information from texts
- Scientific topics include:
 - use of background knowledge from the overall OM scenario:
 - domain ontologies
 - (open) processes
 - user profiles
 - ...
 - processing of structured (HTML/XML) documents

We Will Identify Elementary Building Blocks and Control Mechanisms for DAU

FURTHER DAU RESEARCH

Source: Knowledge Management Group

Class. = classifying component
Entr. = extracting component
Fusion = feature fusioning component
Research Topics 4 & 5: Business Process Orientation

- flexible, scalable OM framework for evolutionary growth
- representation and enactment of weakly-structured workflows
- toolkit for construction and maintenance of domain ontologies
- improved information access by developing more integrated/easier adaptable DAU techniques

FRODO’s Knowledge Management is Oriented Towards Business Processes

- business processes constitute the context for active situation-specific retrieval and task-specific archiving
- business process oriented knowledge management requires:
 - a systematic approach for introduction and evolution of OM solutions with appropriate modeling support
 - a suitable notion of processes beyond the limitations of strict workflow
The Methodology Shall Result in a ‘Handbook for OM Introduction’

Initial phase:
- OM-relevant entities and relationships in a company: who, where, why, what ...
- introduction guidelines:
 - identify suitable pilots
 - structure/evaluate knowledge sources
 - find communication streams
 - determine partial process models
 - ...

Iterative refinement:
- interleaved planning and execution of weakly-structured, interdependent activities and their knowledge needs

Initial phase:
- OM-relevant entities and relationships in a company: who, where, why, what ...
- introduction guidelines:
 - identify suitable pilots
 - structure/evaluate knowledge sources
 - find communication streams
 - determine partial process models
 - ...

Iterative refinement:
- interleaved planning and execution of weakly-structured, interdependent activities and their knowledge needs

The Methodology Will be Equipped With an Appropriate Modeling Tool

- modeling tasks:
 - business processes & information needs / flow
 - ontologies & knowledge item descriptions
- we will consider:
 - business process modeling (ARIS, ADONIS; UML)
 - machine learning for business process acquisition
 - integrated product and process modeling (bmb+f Verbundprojekt GiPP)
 - agent modeling
 - knowledge/ontological engineering (Protégé, KADS organizational model, ...)

The integrated modeling approach shall be based on standard techniques but must be extended for weak workflows.
Weakly-Structured Workflow Will Serve as FRODO’s OM Task Level

- knowledge-intensive activities are seldom adequately represented by strictly formalized workflows
- weak workflow characteristics:
 - workflow control not completely predetermined
 - interleaved modeling/refinement and execution
- approach:
 - consider ad-hoc workflow, flexible workflow configuration
 - declarative formalism: logic-based, agent-based
 - open question: how can the KnowMore notion of context (based on strong workflow models) be transferred to the weak workflow scenario

Core Research Areas of FRODO

SUMMARY
- specialized speech acts, protocols, and standard agents for business-process oriented knowledge management
- distributed / networked knowledge representation
- domain ontology acquisition based on learning from texts and user interaction
- DAU techniques (classification / information extraction) for structured documents & with background knowledge
- declarative representation and enactment of weakly-structured workflows