
Context-Aware Service Discovery using
Case-Based Reasoning Methods

Markus Weber1, Volker Hudlet2, Thomas Roth-Berghofer1,2,
Heiko Maus1, and Andreas Dengel1,2

1 Knowledge Management Department,
German Research Center for Artificial Intelligence DFKI GmbH

Trippstadter Straße 122, 67663 Kaiserslautern, Germany

2 Knowledge-Based Systems Group, Department of Computer Science,
University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern

{firstname.lastname}@dfki.de,v hudlet@cs.uni-kl.de

Abstract. In this paper we introduce an architecture for accessing dis-
tributed services with embedded systems using message oriented mid-
dleware. For the service discovery a recommendation system based on
case-based reasoning methods is utilized. The main idea is to take the
context of each user into consideration in order to suggest appropriate
services. We define our context and discuss how its attributes are com-
pared.
The presented prototype was implemented for Ricoh & Sun Developer
Challenge, thus the client software was implemented for the Ricoh’s Multi
Functional Product (MFP). The similarity functions were designed and
tested using myCBR, and the service recommender application is based
on the jCOLIBRI CBR framework.

Key words: Case-Based Reasoning, context, service discovery, myCBR,
jCOLIBRI

1 Introduction

The Ricoh & Sun Developer Challenge3 is a programming contest where students
invent and implement innovative applications for Ricoh’s Multifunctional Prod-
uct (MFP)4. The MFP is an office machine that incorporates the functionality
of several devices in one. It is a combination of printer, scanner, photocopier,
fax and e-mail systems. Furthermore it offers developers Ricoh’s Embedded Soft-
ware Architecture SDK (SDK/J)[1] for implementing and delivering customized
Java-based solutions hosted on Ricoh MFPs. A large touch screen is the main
interaction device.

As we see the need to decouple business logic from the MFP, we decided to
come up with a distributed architecture to access services. Obviously a lot of ap-
plications for MFP devices focus on document handling. Choosing a centralized
3 http://edu.ricoh-developer.com/contest/open/index.jsp
4 http://www.ricoh.de/products/multifunction/mediumworkgroup/mpc2550.xhtml



approach seems to be a reasonable way to implement services, because a service
implemented and running on a server machine is not as limited as one on an em-
bedded system. Furthermore the services are independent of the programming
language offered on the embedded system, as the business logic is implemented
on a server machine.

Such a service-oriented architecture will grow quite fast if a suitable software
development kit is available for a community or other vendors, as can be seen
by such current trends as the Apple Appstore5 for the iPhone6. So service dis-
coverability is issued in such a service oriented architecture, there is a need for
an intelligent way to recommend services, especially considering the end user at
an MFP is confronted with limited time and interaction convenience.

Let us assume the following scenario: A business man is traveling on a busi-
ness trip to a conference. At the airport he might be interested in information
related to his location, the airport, such as offers of the duty free shop. Arriving
at the hotel he, as a hotel guest, might be interested in information about the
hotel services. In the evening he might be looking for a good restaurant and in
the morning at the conference he may want to read news about the financial
market.

As we can see in this scenario the context is a good indicator which service
might be helpful to recommend services for a user. Hence service recommenda-
tion based on context seems to be a promising approach. For the Ricoh contest
prototype we considered the context of the user comprised of user role, location
type, type of device and daytime. Examples for user roles are tourist, business
man, student or professor, and for location types a hotel lounge or a kiosk as a
public place and an office environment as a private place.

Case-based reasoning methods are a promising approach to implement rec-
ommendation systems (see, for example, [2]). Thus, CBR methods are also ad-
equate for recommending services. As context information is a good indicator
of which service might be helpful, the context is stored as a case. One of the
big advantages is that CBR systems are capable of learning from the users feed-
back, hence service recommendation is improved by taking user feedback into
consideration. Besides the recommendation, the context could also be used to
personalize services.

In this paper we discuss the design of our architecture and its implementa-
tion. Moreover we suggest a service recommender that takes the context of the
user into consideration to suggest services using case based reasoning methods.
Our prototype focuses on the MFP as a service consumer. In Section 2 we will
discuss the context, and in Section 3 we present the suggested architecture. The
service recommendation using a case-based reasoning approach will be shown in
Section 4. The communication between the services and the device is the focus
of Section 5 as well as the client software rendering the user interface. Finally,
we introduce a service that has been implemented as a proof of concept together
with an outlook on what still has to be done.

5 http://www.apple.com/de/iphone/appstore/
6 http://www.apple.com/de/iphone/



2 Context

In our work we decided to use the context as an indicator to suggest services
that fit to current needs of the user. In mobile computing context-awareness
is an important research topic, as modern human mobile computing becomes
more important. Modern mobile devices are capable of accessing online service
via GPRS, UMTS, WLAN, and so forth, hence the need for personalised and
adaptive information services is rapidly increasing.

Schmidt et al. [3] investigate in their work how to specify context in mobile
computing. They introduced a working model for context and discuss mecha-
nisms to acquire context beyond location, and application of context-awareness
in ultra-mobile computing. Therefore they investigated the utility of sensors for
context-awareness and present two prototypical implementations. In [4], Kofod-
Petersen described an approach to facilitate the use of contextual information
in order to improve the quality of service in a mobile ambient environment. So
context-awareness seems to be a promising approach for the MFP, as informa-
tion about the MFP’s environment is easy to measure. Hence we need to define
the term context and how our context looks like.

A popular definition of context is given by Dey [5]: “Context is any informa-
tion that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.”

Fig. 1. Context of the MFP.

For our purposes we could take the definition quite literally. We looked at the
context of an MFP and investigated which information could be automatically
measured in order to characterize a situation and found that the attributes user
role, daytime, device, and type of location were appropriate for defining our
context (see Figure 1).



User Role Identification of the user role is not a trivial task. We need quite
some knowledge about the user. For the prototype we assumed that the user is
registered at a service provider and some initial knowledge about his role exists,
such as his job or his hometown. By using simple assumptions like if someone
uses an MFP in a city that is far away from his hometown, he might be there as
a tourist, or on a business trip. To improve the result of this simple reasoning
method, the registry can ask the user for feedback and propose possible roles to
choose from.

Daytime Measuring daytime is a trivial task, as the devices have an internal
clock. For our purpose? we divided a day into five intervals:

Morning 6:00am–11:00am
Noon 11:00am–2:00pm
Afternoon 2:00pm–6:00pm
Evening 6:00pm–11:00pm
Night 11:00pm–6:00am

During the day the needs of a user might change. For instance around noon or
in the evening a restaurant guide might be more likely to be helpful as in the
middle of the night.

Device Even though our focus is on MFP devices, the services could also be
used by mobile devices, as already addressed. Thus the type of the device is an
important issue. Services producing larger documents are more interesting for
e-readers or MFP devices as for smart phones, as reading larger texts on a smart
phone can be unpleasant.

Type of location This attribute has to be set by the administrator of the device.
Therefore a predefined set of possible types has to be available, such as public
place, office or private household. According to the location several services could
be excluded as the environment is not adequate, for instance a banking service
on a public place. Another example could be a hotel, in which tourist services,
restaurant and entertainment guides would be appropriate.

The following section will take a closer look at the architecture of system to
give an overview where context and CBR methods can improve quality of the
system. Further on the implementation of the CBR system and the similarity
functions will be discussed.

3 Architecture overview

Our framework is a distributed architecture for accessing services with a mobile
device or an MFP, respectively. The business logic is implemented in services
running on server machines. The device just provides the user interface and
communicates with the services. Figure 2 illustrates a schematic overview of the
system and its components.



Fig. 2. Technical overview of the whole system.



The service provider is the entity that offers services and the service registry.
Users of the system have to be registered at the service provider as additional
services can only be provided to registered users. Each user creates a profile with
knowledge about his interests and some meta information about him, such as
his job, his city and so on.

In order to authenticate users (1), we suggest, for example, to use RFID card
systems (such solutions are widely available for MFPs) or biometric sensors on
MFP devices, as no typing is needed for user password authentication. Context
information, described in detail in Section 2, will be transmitted to the service
registry (2).

The service registry is the main component in the architecture as it man-
ages the services and their recommendation. Each service, either of the service
provider itself or other providers, has to register at the service registry. The
recommendation is realized by using a case-based reasoning system (3). Services
will be ranked according to their relevance, which, in turn, is calculated by com-
paring the context of the user with contexts in the case base. Each of the cases
has an assigned service that suited the context best in a past situation. After cal-
culating the similarity for all cases, a list of available services ordered according
to their relevance is transmitted to the MFP (4).

The recommended services will be displayed on the MFP and the user is
able to choose one of the suggested service (5). By selecting a service the com-
munication process between service and user starts. The service sends a user
interface form to the MFP which is rendered on the display. Each selection will
be immediately transmitted to the service and triggers an action.

We distinguish between push and pull services. Push services use the capa-
bilities of the device to scan documents or taking pictures. The information is
“pushed” to the service and processed. Pull services retrieve documents from a
service. In our prototype we just implemented a pull service, as a proof of con-
cept (see Section 6). Further on several dummy services are implemented and
added to the service repository and registered at the registry for demonstrating
the recommendation of services. Nevertheless push services can be implemented
as well as the MFP is capable of scanning documents or a modern mobile phone
can take pictures.

In order to interact with a service a user interface must be provided (see
Figure 3). The user interface should be generic enough to be feasible for all ser-
vices, but must be flexible enough to be adaptable to each service. This dynamic
requirement motivated us to build upon a user interface description language
which is interpreted during runtime and rendered on the screen of the MFP. As
an additional advantage of this approach other types of devices can also consume
the services and adequately render their user interfaces.

For the user interface description language we use the open W3C standard
XForms [6]. As the device does not support the complete bandwidth of user
interface elements proposed by XForms, only a subset was implemented on the
MFP. At the moment only text and buttons are supported. In later versions it
is possible to increase the set of featured elements.



Fig. 3. Screenshot of the recommended services running in the Ricoh SDK/J emula-
tor environment. This screenshot is taken at an earlier development stage. Category
browsing will be available in the next version.

After discussing the components from a top-level perspective, we will have
a closer look at the system. As the service registry is the central component of
the system it will be introduced in the following section.

4 Service Recommender

The main function of the service registry is the discovery of appropriate services.
We interpret the context of the user as problem and the service as solution. By
taking the current context into consideration the system calculates a relevance
for the cases, stored in the case base. As the main idea of CBR is to learn
from experience we see the service registry as an experienced advisor that knows
about several contexts and can tell the user which services are available in order
to help serving his needs.

Firstly each service has to register at the service registry and provide infor-
mation, such as:

Service name Name of the respective service
Service identifier Service identifier used to address the service
Description Short text that describes the functionality of the service
Category Category of the respective service, e.g., tourist services.
Initial context Context that describes a situation in which the service is ap-

propriate
Filter set [optional] Filters restricting the usage of the service in a certain

context

The initial context is needed to solve the bootstrapping problem, as we need
cases for our case base. So developers of the service have to think about a reason-
able context, where the service is helpful. This context is a prototypical for this



service and will be relevant to find the service in its initial state. For instance
a restaurant guide could be helpful at a public place at noon or in the evening.
This common case will be added to the case base.

During the retrieval process and the assembly of the service list, we also have
the opportunity to apply filters. For instance there could be certain limitations
for the services, e.g., a service might not be allowed to be accessed in a public
place, because confidential data is accessed. Another example would be that only
for certain cities local information is available. Thus services can be excluded by
the application of a set of filters.

Fig. 4. Screenshots of the similarity functions designed with myCBR

As we have initial cases in our case base we needed to design our similarity
functions that compare context information. In order to compare the user role
we decided to use an asymmetric table similarity (cf. Figure 4, middle). For
instance we need to find a measure how similar a student is to a professor or
a business man to a tourist. The asymmetric character becomes obvious if we
compare a student and a tourist. In our example, the student is more similar to
a tourist, as they might have the same interests. If we compare a tourist to a
student, the similarity might be even 0.0, as a tourist is not interested in services
offered by a university.

For daytime we defined time intervals and gave them a symbolic value, such
as MORNING, NOON and so on. Thus we are able to compare them with a
symmetric table similarity where MORNING is more similar to NOON as to
AFTERNOON, and vice versa (cf. Figure 4, top).

The location itself is just matched exactly. A more sophisticated solution
would be to compare cities by using an ontology. Cities can be clustered accord-
ing to special characteristics and arranged in a taxonomy. But as the location is



just important for services, if they provide location based information, we just
implemented the simple approach. The usage of location based information is
shown in Section 6, where we introduce context-aware service. Currently the
more important attribute is the type of the location as it describes the loca-
tion in a more common sense. A hotel lounge in New York is quite similar to a
hotel lounge in Rome. Thus this information is more important for service rec-
ommendation. We chose different symbols such as HOTEL-LOUNGE, KIOSK,
OFFICE, and so forth and arranged them in a taxonomy using abstract terms
to group them such as PUBLIC-PLACE.

In our prototype the device attribute is less important, as we only imple-
mented a client for a specific MFP device. Nevertheless the basic idea of the
architecture is to take different devices into consideration. A service that might
be appropriate for MFP devices, can be inappropriate for smart phones, because
the generated document is too large to read it on a small display. In order to
group similar types of devices a taxonomy is defined, with abstract terms like
MOBILE-DEVICE (cf. Figure 4, bottom).

The global similarity is a weighted average of local similarities. After a sim-
ilarity value for the retrieved cases is calculated and ordered according their
relevance, a set of services has to be transfered to the requesting device.

If none of the suggested service is appropriate for the user, he is able to browse
a category based listing of the services. Even though the calculated relevance
might be low the service might be appropriate in the users current context. Thus
in the revise step of the CBR cycle [7] the user decides by selecting a service
that it fits to his current context. As the selected service and the current context
are transmitted to the service registry, the system can learn additional contexts
where the service might be applicable in the retain step. Thus the relevance of
the service will be higher if a similar context comes up.

For the implementation of the prototype we choose myCBR7, as it supports
rapid prototyping to design and test the similarity functions [8]. Furthermore
these functions can be exported and used within the jCOLIBRI8 CBR Frame-
work [9] quite easily, which was used to implement the service recommender.

As we are using a distributed environment communication is quite important
and is discussed in the subsequent section.

5 Communication

In our system we are faced with several issues. Services should be able to run
on different machines, thus we need a mechanism to discover the recommended
services. Furthermore an asynchronous communication is better suited as devices
will not block while accessing service functionality.

All these issues can be handled by using a message oriented middleware such
as the Extensible Messaging and Presence Protocol (XMPP) [10]. We assign a
unique identifier (JID) to each device, service and the service registry to provide
7 http://mycbr-project.net/
8 http://gaia.fdi.ucm.es/projects/jcolibri/



a way to address each other. The communication between each component in
the architecture illustrated in Figure 2 is realized by sending messages.

The device starts the communication process by sending the context to the
service registry. This triggers the reasoning process and a list incorporating the
recommended service and their respective JID is replied to the device. The user
now selects one of the recommended services. By using the JID the device can
address the service and directly start the communication process with the ser-
vice, without knowing the actual host where it is running. As the routing is
handled by the XMPP protocol even using a service running behind a firewall
is possible. Encryption of the communication channels is easy to realize, as it is
already offered by the protocol. Further on the protocol provides presence infor-
mation. Using this information the service registry always knows which services
are running.

For the implementation of the prototype we choose the Smack API9 on the
server side. On the MFP, we had to use the Beep API10 as the Smack API is
not supporting J2ME. As XMPP is an open protocol based on XML there are
several libraries for various programming languages11 available. Accordingly the
implementation of the services is not limited to a specific programming language.

6 Context-Aware Service

After discussing the architecture and the service recommendation system, we will
finally introduce a context-aware service. As a proof of concept, where context-
awareness seems to be reasonable, the idea of a personal assistant came up. The
concept envisions an assistant that knows where we are and which interests we
have. According to this information the assistant collects information about the
current location on a map and points of interests next to the current location.
Furthermore it should compose interesting news articles that might be relevant
according to the interest of the user.

Thus we need context information and some kind of user profile to achieve the
goals of such a service. As already mentioned in Section 3 each user has to register
at the service registry. With the registration the user creates a personal profile
where he defines his personal interests. We decided to store this information using
an ontology, the domain knowledge of the service provider. In our prototype the
domain knowledge consists of simple profile information about the user, stored
in the database with the instances of the domain knowledge (cf. Figure 2).

Information about the location of the device is transmitted by the device
itself. An MFP will send the location that is configured by the administrator
of the device. As not all mobile devices are equipped with GPS receivers, an
automatic transmission can not be guaranteed or can be approximated, using
Cell-ID of a base station in the GSM network.
9 http://www.igniterealtime.org/projects/smack/index.jsp [Last access: 2009-02-09]

10 http://sourceforge.net/projects/beep/ [Last access: 2009-02-09]
11 http://en.wikipedia.org/wiki/List of XMPP library software [Last access: 2009-02-

20]



Fig. 5. Personal document generated by the personal assistant service.

After transmission of the available context information the service asks the
user some questions in a dialog-based manner to acquire which kind information
and which amount of information the user would like to have. The selection of
the news articles is realized by ranking of the news categories according to the
interests of the user. Finally the result of the service, a personal document as
illustrated in Figure 5, is sent to the MFP and can then be printed.

Besides the personal assistant service, services such as restaurant guides,
timetable services, or event recommenders, which suggest and print events next
to the users location and match his preferences, are examples for possible ser-
vices. For the contest, we provided them as dummy services with appropriate
initial context.

7 Conclusion and Outlook

In this paper we have shown an application framework which has been developed
within the scope of the The Ricoh & Sun Developer Challenge programming
contest. This framework enables the creation and deployment of context-aware
services that can be consumed by devices, especially the MFP.

As the architecture and utilized technologies are not limited to the MFP, the
architecture could be extended to access services with mobile devices. So instead



of printing a document, it could also be shown on a mobile device, such as the
e-reader iRex Iliad12 or on a smart phone such as Apple’s iPhone.

By offering a service development kit to other vendors or a community an ap-
plication market platform can grow quite fast, ideally like the Apple App Store.
Thus an intelligent way to recommend services could be helpful to find appropri-
ate services. Crawling through categories is time-consuming and an appropriate
service might even not be found. Therefore using CBR methods seems to be a
promising approach in this scenario, as it is an intuitive way to use experience
with usage of this service. Furthermore the system is able to learn from user
feedback, as mentioned in Section 4.

A further development which supports other (mobile) devices is possible, as
we build upon a programming language independent communication stack and
user interface, but this remains a future task. As we have shown the core feature,
the service recommender takes advantages of case based reasoning methods and
frameworks. By the use of these and also by the use of the current surround-
ing context the recommender can propose suitable services. In future work the
recommender will be refined to offer even better service matches.

References

1. Ricoh: White paper: Embedded software architecture sdk (2004)
2. Bridge, D.: Product recommendation systems: A new direction. In: Workshop

on CBR in Electronic Commerce at The International Conference on Case-Based
Reasoning (ICCBR-01. (2001) 79–86

3. Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to Context than Location.
Computers & Graphics Journal, Elsevier 23 23 (1999) 893–901

4. Kofod-Petersen, A., Mikalsen, M.: An Architecture Supporting implementation of
Context-Aware Services. In Floréen, P., Lindén, G., Niklander, T., Raatikainen,
K., eds.: Workshop on Context Awareness for Proactive Systems (CAPS 2005),
Helsinki, Finland, HIIT Publications (June 2005) 31–42

5. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing
5 (2001) 4–7

6. W3C: Xforms 1.0 (third edition) (2007) http://www.w3.org/TR/xforms [Last
accessed: 2009-02-09].

7. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodolog-
ical Variations, and System Approaches. AICom - Artificial Intelligence Commu-
nications, IOS Press 7(1) (1994) 39–59

8. Stahl, A., Roth-Berghofer, T.: Rapid prototyping of cbr applications with the open
source tool mycbr. In Althoff, K.D., Bergmann, R., Minor, M., Hanft, A., eds.:
Advances in Case-Based Reasoning. Volume 5239 of Lecture Notes in Computer
Science., Springer (2008) 615–629

9. Recio-Garćıa, J.A., Dı́az-Agudo, B., González-Calero, P.A.: Prototyping recom-
mender systems in jcolibri. In: ACM Conference On Recommender Systems Rec-
Sys’08. (2008) 243–250

10. Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. RFC
3920 (Proposed Standard) (October 2004)

12 http://www.irextechnologies.com/products/iliad


